学年

質問の種類

数学 高校生

この辺の根本的な考え方から分かりやすく教えてもらえませんか。むらさき線のところが特に分からないです。Oでかこっているのは全部1ミリも分からないです。

に (1) 5. B 1 1 (1) DE//BCより AE DE D M AC BC 3 2 よって, BC=6(cm) 9 BC XC (2) ∠ABC= ∠ACD 02 2=α×4より,216a y=ax2 のグラフが、 点A(4,2)を通るから、 <BAC= ∠CAD (共通) より, 2組の角がそれぞれ等しいので △ABC∽△ACD よって, AB: AC=AC: AD 6AD=9 6:3=3 3 よって,a= 1/2 である。 AB=OB だから,△OABはAB=OB の二等辺 三角形である。 OA の中点をM (21) とすると, OBMは直 角三角形であるから OB2 = OM2+MB2 B(0, b) とすると, OB2=62 OM2+MB2=22+12+22+(b-1)2 =62-26+10 よって、62=62-26+10 これを解いて.6=5 よって、Bのy座標は5である。 J (2) ∠OBAの二等分線を1とすると, 1 は線分 OA の中点M(2,1) を通る。 よって、この傾きは-2である。 したがって, AD=2 (cm) (3)底面積は, 4×4=16 (cm²) 高さは, 体積は,1/23> -×16×3=16 (cm3) (4) BD=3cm, ∠ADB=90° だから, 三平方の定理より, AB2=32+42=25 AB>0より, AB=AC=5(cm) (5) 弧 BC に対する円周角より ∠BAC = ∠BDC=65° ∠AEB=180°(65°+15°)=100° また,切片が5より1の式は,y=-2x+5である。 (6) 11/113 π33=36 (cm3) πC (3)点Cは,y=1/2x2のグラフ上にあるから, c(t, 1/2)とおける。 2 (1) △ABCとAED において さらに,点Cは1上にもあるから, t=-2t+5 8 これより, =-16t+40 t²+16t-40=0 が成り立つ。 <BAC= ∠EAD (共通) 仮定より ∠ABC=∠AED ①,②より 2組の角がそれぞれ等しい △ABC∽△AED よって AB AE = AC: 6:AE=5:3

回答募集中 回答数: 0
数学 高校生

この辺の根本的な考え方から分かりやすく教えてもらえませんか。むらさき線のところが特に分からないです。Oでかこっているのは全部1ミリも分からないです。

に (1) 5. B 1 1 (1) DE//BCより AE DE D M AC BC 3 2 よって, BC=6(cm) 9 BC XC (2) ∠ABC= ∠ACD 02 2=α×4より,216a y=ax2 のグラフが、 点A(4,2)を通るから、 <BAC= ∠CAD (共通) より, 2組の角がそれぞれ等しいので △ABC∽△ACD よって, AB: AC=AC: AD 6AD=9 6:3=3 3 よって,a= 1/2 である。 AB=OB だから,△OABはAB=OB の二等辺 三角形である。 OA の中点をM (21) とすると, OBMは直 角三角形であるから OB2 = OM2+MB2 B(0, b) とすると, OB2=62 OM2+MB2=22+12+22+(b-1)2 =62-26+10 よって、62=62-26+10 これを解いて.6=5 よって、Bのy座標は5である。 J (2) ∠OBAの二等分線を1とすると, 1 は線分 OA の中点M(2,1) を通る。 よって、この傾きは-2である。 したがって, AD=2 (cm) (3)底面積は, 4×4=16 (cm²) 高さは, 体積は,1/23> -×16×3=16 (cm3) (4) BD=3cm, ∠ADB=90° だから, 三平方の定理より, AB2=32+42=25 AB>0より, AB=AC=5(cm) (5) 弧 BC に対する円周角より ∠BAC = ∠BDC=65° ∠AEB=180°(65°+15°)=100° また,切片が5より1の式は,y=-2x+5である。 (6) 11/113 π33=36 (cm3) πC (3)点Cは,y=1/2x2のグラフ上にあるから, c(t, 1/2)とおける。 2 (1) △ABCとAED において さらに,点Cは1上にもあるから, t=-2t+5 8 これより, =-16t+40 t²+16t-40=0 が成り立つ。 <BAC= ∠EAD (共通) 仮定より ∠ABC=∠AED ①,②より 2組の角がそれぞれ等しい △ABC∽△AED よって AB AE = AC: 6:AE=5:3

回答募集中 回答数: 0
資格 大学生・専門学校生・社会人

至急お願いします。 簿記3級の仕訳(小口現金の処理)について質問があります。 一枚目の写真を見ていただくとわかる通り小口現金を仕訳する時には2つの仕訳方法があることがわかります(ひとつは会計係が小口現金を補給した時の仕訳、ふたつめは支払報告と小口現金の補給が同時の時の仕訳)... 続きを読む

小口現金 CASE 24 会計係が小口現金を補給したとき の仕訳 ゴエモン株式会社 月 補給 小切手 300円 そこで、先週使った分 会計係 小口現金 小口現金 (300円)の小切手を振り 出し、小口現金を補給しま した。 今日は月曜日。ゴエキ コンでは金曜日に小口 現金の支払報告を受け、 次週の月曜日に使った分だ け補給するようにしていま す。8- 支払報告と小口現金の補給が同時のときの仕訳 小口現金の補給は、支払報告を受けたときに、ただ ちに行うこともあります。 ゴエモン株式会社 金 報告 金曜日に報告を受け さて、金曜日に補給す るケースですね。 ○ 小切手 300円 会計係 取引 補給 小口現金 小口現金係 6月8日 先週の小口現金係の支払報告に基づいて、 小口現金300円を小切手 を振り出して補給した。 なお、 ゴエモン(株)では定額資金前法を採用しており、 小口現金として500円を前渡ししている。 このように支払報告と小口現金の補給が同時のとき は、 ①支払報告時の仕訳 CASE 23 と②補給時の仕訳 24 をまとめて行います。 手形と電子 ①支払報告時の仕訳 CASE 23 会計係が小口現金を補給したときの仕訳 定額資金前渡法では、 使った分(300円)だけ小口 現金を補給します。 したがって、 補給分だけ小口現金 (資産)の増加として処理します。 (消耗品費) 100 (小口現金) -300 (雑 費) 200 ②補給時の仕訳 CASE 24 + CASE 24 の仕訳 (小口現金) -300 (当座預金) 300 使った分(300円) だけ補給することに より、定額(500円) に戻ります。 (小口現金) 300 (当座預金) 300 補給前 小口現金 補給後 ③支払報告と補給が同時の場合の仕訳 小口現金 先週末の残高 口小 先週末の残高 (消耗品 100 (当座預金) 300 費) 200円 >500 200円 補給後残高 (雑 費) 200 補給分 300円 500円 ①の貸方の小口現金 と②の借方の小口現 金が相殺されて消え ます。 問題編

未解決 回答数: 1
数学 高校生

(1)と(2)をわかりやすく教えてください

例題 126 205 0000 は定数とする。 0≦02 のとき, 方程式 sin20-sin0=aについて この方程式が解をもつためのαのとりうる値の範囲を求めよ。 この方程式の解の個数をαの値によって場合分けして求めよ。 SMART A SOLUTION & 方程式f(0)αの解 3つのグラフ y=f(0), y=aの共有点 ink (002) の解の個数 k=±1で場合分け。 SO の個数はk =±1のとき1個;-1<k<1のとき2個 ; k<-1,1<kのとき0個 cod sin20-sin-a 基本125 I- ① とする。 COT 4章 sind=t とおくと t²-t=a (2) ただし, 002 から0 <-11 16 (3) y したがって、方程式 ①が解をもつための条件は, 方程式 ②が③ の範囲の解をもつことである。 y=f-t [1]→ 2 y=a 1 方程式 ②の実数解は、v=-= (-1/2-1の [2]→ 4 グラフと直線 y=αの共有点のt座標であるから, [3] 1 ¦-1 021 1 右の図より ≤a≤2 [4]- [5] 三角関数のグラフと応用 20 & 0=n+200-ies 201 012 (1) の2つの関数のグラフの共有点の t座標に注目すると, 方程式 ① の解の個数は,次のように場合分けされる。 [1] α=2 のとき, t=-1 から 1個 全 1 [2] 0<α <2 のとき, -1 << 0 から 2個 () [4]. + [3] -[5] [3] α=0 のとき, t=0, 1 から 3個 [4] 21 -[3] 1-1 <<0 のとき,O<< 21/21/12/11 10 π <t<1 [2]→ の範囲に共有点がそれぞれ1個ずつあり、そ [1]+/-] t=sin 0 れぞれ2個ずつの解をもつから 4個 [3] a=-12 のとき,t=1/23 から 2個 [6] a<-¼¼, 2 <αのとき 0個 aot 201

未解決 回答数: 1
化学 高校生

(2)の(ⅰ)についてなのですが32.4度までは無水物でそこから下の温度は水和物が析出すると思ったのですが別々に考えなくて良いのですか? 教えて頂きたいです。よろしくお願い致します。

保たれて 68 〈固体の溶解度(応用)〉 ★★★ 4/6 右下図に、硫酸ナトリウムの溶解度曲線を示す。 以下の説明を読み、次の各問いに 答えよ。 答えの数値は有効数字2桁で示せ。 (Na2SO4=142, H2O18) (説明) この図にはA,B2つの交点がある。B(32.4)よービ 50 比較的濃い水溶液の場合のB点 (32.4℃, 50g) で無 45 水 _Na2SO4 [[]] は,硫酸ナトリウム十水和物 Na2SO4・10H2Oと塩 硫酸ナトリウム無水物の溶解度曲線が交差している 30- る。 つまり 32.4℃より高い温度の溶液からは19F--- 水 無水物Na2SO4の結晶が析出し, 32.4℃より低A (1.2)4. い温度の溶液からは硫酸ナトリウム十水和物 0 20 Na2SO4・10H2Oの結晶が析出する。 一方、比較 「Na2SO410H2O aa 08 (1) 20 40 60 80 100 温度 [°C] 的希薄な水溶液を冷却していくと, 水の凝固点 (0℃) からA点 (-1.2℃, 4g)までは, ほぼ直線的に水溶液の凝固点が降下していく (8) (1)60℃の硫酸ナトリウムの飽和水溶液100gから60℃に保ちながら水40gを蒸発 させたとき,析出する結晶は何gか。 (2)60℃の硫酸ナトリウムの飽和水溶液100gがある。 (i) 20℃に冷却したら何gの 結晶が析出するか。 (ii) 60℃に保ちながら水40gを蒸発させた後, 20℃に冷却し たら何gの結晶が析出するか。 (3) A点ではどんな結晶が析出するのか。 30字以内で説明せよ。 (東京医大改)

未解決 回答数: 0