学年

質問の種類

数学 高校生

この問題でx=0で微分可能でないことは、計算して求めますか?解答には、計算式が書いてなかったのですが、x=0で微分可能でないことはすぐわかることなのですか?回答よろしくお願いしますm(_ _)m

関数y=|x|√x+2の極値を求めよ。(笑) ReAction 関数の増減は、 導関数の符号を調べよ IIB 例題220 ③開 noboA 思考プロセス 場合に分ける xの範囲 (定義域に注意) xx+2 |x|√x+2= ] のとき)← -x√x+2 それぞれ微分を考える ] のとき) 絶対値記号を含む関数の注意点 ・・ 関数が微分可能でない点で極値をとる場合が ある。 y to 例 x=0で微分できないが極小 y=|x| y 例題 よって, x>0 66 X y′ = √x +2 + 定義に戻る 極小・・・ 減少から増加に変わる点 極大・・・ 増加から減少に変わる点 解この関数の定義域は,x+2≧0 より x≧-2 (ア) x≧0 のとき y=x√x+2 減少 増加 x 極小 By = |x|√x+2は x=0で微分できない。 Point参照。 2√x+2 3x+4 2√√x+2 >0 (イ) −2≦x< 0 のとき y=-x√x+2 3x+4 よって, -2<x< 0 のとき y' 関数の微分は定義域の 端点 x=-2では考えな 2√x+2 y=0 とすると 8 -2 ... 4 43 : 0 x=- い。 |極大 4√6 YA 19 3 + 0- + (ア)(イ) の増減 表は右のようになる。 4√6 y 0 > 7 07 9 よって、この関数は x=- 4 -1 のとき 極大値 3 46 9 x = 0 のとき 極小値 0 -24 0 x=0 のときy' は存在 しないが, x= 0 の前後 で減少から増加に変わる から、極小となる。 x 極小 lim Point... 微分可能でない点と極値・ 関数f(x)=|x|√x+2 において XITO f(x)-f(0) = =√2, lim == -√2 f(x)-f(0) 300= x-0 x-0 m 微分可能でない。 しかし, x = 0 の前後で f'(x) の符号

解決済み 回答数: 1
物理 高校生

(2)の緑のマーカのところで、急にsをかけたのって①のpsを使うためですか? そういう発想ってなかなか思いつかなくないですか?慣れですか?

114 第2編■熱と気体 リードC 基本例題 43 気体の状態方程式 239,240 解説動画 なめらかに動く質量 M [kg] のピストンをそなえた底面積 S[m²] の円筒 形の容器に, 1molの理想気体が入っている。 重力加速度の大きさをg 〔m/s'], 大 気圧を po [Pa], 気体定数を R [J/(mol K)] とする。 (1) 気体の温度が T[K] のとき,容器の底からピストンまでの高さ lはいくらか。 Do 1 mol 質量 M (2)加熱して気体の温度を To [K] からT[K] にした。 気体の体積の 増加 ⊿V はいくらか。 底面積 S 指針 ピストンが自由に移動できるから、気体の圧力』は一定である。 解答 (1) 気体の圧力を [Pa] とすると, カ ③式②式より Pos のつりあいより Post pAV=R(T-To) pS-poS-Mg=0 pS= pos+Mg 「pV=nRT」 より p(Slo)=RTo ①式を代入して (poS+Mg)lo=RT 4V= ......① R(T-To) T Þ Mg lo Mg PS ps __RS(T-To) To T DS RS(T-To) = [m3] RTo よってl= [m] poS+ Mg (2) 加熱の前後で 「pV =nRT」 を立てて 前:pSl)=RT 後: p (Slo+⊿V)=RT ......② ・③ poS+ Mg [参考] 圧力が一定のとき, 体積の変化量⊿V と温度の変化量4Tの間には、 「AV=nRAT」 の関係がある。 この関 係を用いて解いてもよい。

解決済み 回答数: 1