学年

質問の種類

数学 高校生

青チャート 数2 不等式の証明 例題29(3) 黄色マーカー部の箇所で、なぜ|b+c|が|b|+|c|になったのか分かりません。 (1)の結果をもう一度利用と書いてありますが、そもそもそこが理解できません。なので(2)も場合分けで考えました。 (1)を利用するの意味を教え... 続きを読む

MAKE 52 XX 基本例題 29 絶対値と不等式 次の不等式を証明せよ。 (1)a+b≧a|+|6| (2)|a|-|6|≦la+b] (3)|a+b+cl≦|a|+|6|+| 基本28 重要 30 指針 > (1) 例題 28 |A= A を利用すると、 絶対値の処理が容易になる。 そこで ......... ABA'≧B'⇔A'-B'≧0 A≧0, B≧0のとき の方針で進める。また、絶対値の性質 (次ページの①〜⑦) を利用して証明してもよ (2),(3) 似た形である。 そこで, (1) の結果を利用することを考えるとよい。 CHART 似た問題 1 結果を利用 ②2 方法をまねる 解答 (1) (a+b)²-|a+b|²=a²+2|a||b|+b²-(a²+2ab+b²) =2(abl-ab)≧0 |a+b≤(a+b1)² よって la+b≧0,|a|+|6|≧0から |a+6|≦|a|+|6| 別解] 一般に,|a|≦a≦|a|-|66|6| が成り立つ。 この不等式の辺々を加えて -(|a|+|6|)≦a+b≦|a|+|6| したがって la+6|≦|a|+|6| (2) (1) の不等式でαの代わりに a +6, 6 の代わりに -6 と おくと (a+b)+(-6)≦la+6+1-6| よって |a|≦a+6|+|6| [別解] [1] |a|-|6| <0のとき ア ゆえに |a|-|6|≦la+61 a+b≧0であるから, |a|-|6|< la +6は成り立つ。 [2] |a|-|6|≧0のとき よって |a+6-(|a|-|6|²=a²+2ab+b²-(α²-2|a||6|+62) =2(ab+lab)≧0 よって (la|-|b|)² ≤|a+b|² |a|-|6|≧0,|a+b≧0であるから [1], [2] から la|-|b|≤|a+b| (3) (1) の不等式でもの代わりにb+c とおくと la+b+c)|≦|a|+|b+cl la+b+cl≦|a|+|6|+|c| ≦|a|+|6|+|c| |a|-|6|≦|a+6| 8800000 4 at ◄|A|²=A² |ab|=|a||6| この確認を忘れずに。 |A|≧A, A≧-A か |-|A|≦a≦|A| -B≦A≦B ⇔ [A]≦B <ズーム UP 参照。 <|a|-|6|<0≦la+6 [2] の場合は, (2) 左 右辺は0以上であるから (右辺) (左辺)≧0を示 す方針が使える。 練習 (1) 不等式√²+2+1√x²+y²+1≧lax+by+1」を証明せよ。 ③29 (2) 不等式|a+b|≦|a|+|6|を利用して,次の不等式を証明せよ。 (ア) |a-6≦|a|+|6| (イ) |a|-|6|≧|a-6102 (1) の結果を利用。 (1) の結果をもう1回利用 (|b+cl≦|6|+|c) Cp.60 EX19 ズーム UP その内 絶対値 数学Ⅰで いて € なわち, 絶対値を 例題 29 に (証明で が多く煩 そこで, ~ (1) 指針 ない。 例題28 (2) 左辺 lal-le いが, 証明 とみ ここ (3) は, (1) 参考 (1). 例題 29 (1) 等号 すなわ (2) 等号7 の代わ (3) 等号7 おいた a(b+c) また, よって,

回答募集中 回答数: 0
生物 高校生

入試を直前に控えているので至急助けてください😭 問3がよく分かりません。三組の対立遺伝子が連鎖とはどういうことなのでしょうか。3枚目には2パターンあると書いてある(違う参考書)のになぜABD/abdで連鎖していると決まるのでしょうか?

キイロショウジョウバエでは、小さな翅(a) は正常の(A) に対して、黒い体色 (b)は褐色 の体色 (B)に対して、 紫色の眼 (d)は赤色の眼(D) に対していずれも劣性である。これら3組の形質 について劣性であるハエと野生型のハエとを交配 して三遺伝子雑種である F, を得た。次にこの Fiの雌と,3組の形質について劣性である雄とを 検定交雑して子(以下, B, という)を得た。 表1は, B の表現型と観察数についてまとめたものであ る。 表1 B の表現型と観察数 表現型 (1) 正常翅・褐体色・赤眼 小翅・黒体色・紫眼 (2) (3) 小翅、黒体色・赤眼 小翅・褐体色・紫眼 〔4〕 〔5〕 小翅褐体色 赤眼 〔6〕 正常翅・黒体色・紫眼 (7) 正常翅・黒体色・赤眼 (8) 正常翅褐体色 紫眼 合計 .. 10.95 125 I+- 観察数 580 572 23 132 270 258 136 29 2.000 問1 (1) ~ 〔8〕 の遺伝子型をそれぞれ記せ。 問2 3組の対立遺伝子が独立に遺伝すれば, B, の表現型の分離比 ((1) (2)(3): (4)(5)(6)(7) 〔8〕) はどうなるか。 最も簡単な整数比で答えよ。 200 問33組の対立遺伝子が連鎖し, 組換えが起こらないとすれば, B, の表現型の分離比 問 2と同様)はどのようになるか。 最も簡単な整数比で答えよ。 問4 実際に得られた結果から, 3組の形質を支配する遺伝子のうち連鎖しているもの の染色体上での位置関係を, A,B,Dの記号を用いて直線上に記せ (小数第2位以 下は切り捨てること)。 (埼玉医科大) x+ 東北大 大阪大 山梨大 群馬大 熊本大 宮崎大

回答募集中 回答数: 0
理科 中学生

中3 天体 解説お願い致します。 日の出の時刻と日の入りの時刻から、鳥取、甲府、銚子、札幌の昼の長さを考えてみることにした。 図2から、1年を通して、鳥取、甲府、銚子の、同じ1日における昼の長さは、ほぼ等しいことがわかった。 一方、銚子と札幌の,同じ1日における昼の長さ... 続きを読む

とっとり 2Tさんは、日本各地の日の出の時刻や日の入りの時刻について興味を持ち, ある年の1年間の鳥取、甲府、 銚子, 札幌の,それぞれの日の出の時刻と日の入りの時刻を本やインターネットで調べた。 図1は,鳥取,甲 ちょう さっぽろ 府銚子, 札幌の,それぞれの位置を示したものである。 また, 図2は,鳥取, 甲府, 銚子の, それぞれの日の 出の時刻と日の入りの時刻を、1年を通して表したものであり, 図3は, 銚子, 札幌について, 同様に表した ものである。 日の出の時刻と日の入りの時刻から,鳥取,甲府, 銚子, 札幌の昼の長さを考えてみることにした。 図2か ら、1年を通して,鳥取,甲府, 銚子の,同じ1日における昼の長さは、ほぼ等しいことがわかった。一方, B1 から, 銚子と札幌の,同じ1日における昼の長さは,季節によって違いがあることがわかった。図3から、札 幌の昼の長さは,同じ1日における銚子の昼の長さと比べたとき, 季節によってどのような違いがあること がわかるか。その違いを,その違いの理由となる, 地球の自転のようすと図1からわかることを合わせて 単に書きなさい。 図 1 に関連づけて、簡単に書き 130° 140° 130 -鳥取 140° -札幌 -銚子 22 -甲府 図2 24 〔時 20 16 刻 12 8 4 AV 0 鳥取 鳥取 甲府 銚子 甲府 七銚子 1234567 8 9 101112 〔月〕 (注) 日の出の時刻と日の入りの時刻 については、各地点の標高が等 しくなるように換算したものを 使用した。 図3 24 〔時〕 20 16 時 刻 12 8 4 - 銚子 0 1 (₁ 銚子 M: +札幌 123456789101112 〔月〕 (注) 日の出の時刻と日の入りの時刻 については,各地点の標高が等 しくなるように換算したものを 使用した。 札幌

回答募集中 回答数: 0
数学 高校生

47. このような解答でも問題ないですか?(記述問題) (赤で書いているところは無視してください)

456 OS 00000 基本例題 47 空間のベクトルの平行 4点A(1, 0, -3),B(-1, 2,2), D(2,3,-1), E(6, a, b) がある。 (1) AB//DE であるとき, a,bの値を求めよ。 また,このとき AB:DE= (2) 四角形 ABCDが平行四辺形であるとき, 点Cの座標を求めよ。 基本7,8 FOSF025 指針▷空間においても,1つの平面上で考えるときは,平面図形とベクトルの関係をそのまま用 いることができる。 (1) AB/DE⇔ DÉ=kAB となる実数がある (AB≠0, DE ¥0) (2) 四角形 ABCD が平行四辺形であるための条件は AB=DC (AB0, DC ¥0) AB=CDではない! 計算の際,次のことを利用する。 [平面の場合と同様。 空間ベクトルでは成分が加わる] 2点A(a1,a2,a3),B(b1, 62,63) について AB=(bュ-a1, bz-az, bs-as) 解答 (1) AB//DE であるから, DE=Aとなる実数んがある。 AB=(-2, 2,5), DE=(4,4-3, 6+1) であるから (4, a-3, b+1)=k(-2, 2, 5) ...... (*) -8 よって 4=-2k, a-3=2k, 6+1=5k ゆえに h=-2a=-1,6=-11 また, |DÉ|=|-2AB|=2|AB|から (2) 点Cの座標を(x, y, z) とする。 四角形 ABCD は平行四辺形であるから DC=(x-2, y-3, z+1) であるから AB: DE=1:2 (-2, 2, 5)=(x-2, y-3, z+1) -2=x-2, 2=y-3,5=z+1 AB=DC よって ゆえに x=0, y=5, z=4 よって C(0, 5, 4) 別解 四角形 ABCD は平行四辺形であるからAC=AB+AD よって AC=(-2, 2,5)+(1,3,2)=(-1, 5, 7) ゆえに, 原点を0とすると OC=OA+AC=(1, 0, -3)+(-1, 5, 7)=(0, 5,4) よってC(0, 5,4) 4 firbt AB=kDE として考えても よいが, その場合, kDE は (4k, ka-3k, kb+k) となり、左の解答よりも計 算が面倒になる。 Foll B BO ARE (1) a=(2, -3x, 8), 6= (3x, -6, 4y-2) とする。と 1-21 +0 5 [参考] ベクトルについて, 例えば, (*) を a-3=k 2 のように成分を縦に書く記述法もある。 A B \6+1/ 縦に書くと,x,y,zの各成分が同じ高さになり見やすい, という利点がある。 (-AU-CAD- DS D

回答募集中 回答数: 0