学年

質問の種類

数学 高校生

問題44の(3)や、問題45の(2)のような式変形を、こんな天才的な発想出来ないでしょ!と思うのは僕だけでしょうか。解説を見れば何をしているのかはわかるのですが、問題によってやり方も様々で、慣れとかでどうにかなるものなのかと思ってしまいます。 何かコツや、式変形の対応デッキ... 続きを読む

基礎問 76 MAN AV 44 はさみうちの原理(I) 次の問いに答えよ. (1) すべての自然数nに対して, 2">n を示せ. (2) 数列の和 Sm= (1)をnで表せ。 (n=k(k≧1) のとき,2">k と仮定する. 両辺に2をかけて, 22k ここで, 2k-(k+1)=k-1≧0 (≧1 より) ..2'+'>2k≧k+1 すなわち, 2+1>k+1 よって, n=k+1 のとき, ① は成りたつ. (i), (ii)より, すべての自然数nについて, 2">n は成りたつ. (3) lim Sm を求めよ. (1) 考え方は2つあります。 ... 1 2 n (2) Sm = + 4° 4' +・・・+ ...... ② 4"-1 1/Sn= 1 n-1 n +・・・+ + ......3 4₁ 4"-1 4" ② ③ より 3 (IIB ベク4 ) Sn= + 1 1 n -(+) +...+ n 4' 4"-1 -Sn= 4 1 4" I. (整数)” を整式につなげたいとき, 2項定理を考えます。 II. 自然数に関する命題の証明は数学的帰納法. (IIB ベク137 (2) 本間のΣの型は, 計算では重要なタイプです. (IIB ベク121 S=Σ(kの1次式)rk+c (r≠1) は S-S を計算します。 (3) 極限が直接求めにくいとき, 「はさみうちの原理」 という考え方を用います。 bn≦a≦cm のとき .. Sn= n (3)(1)より2">n だから, (2")'>n . 4">n²=0<< 20< n 4 4-1 n lim40 だから、はさみうちの原理より lim 11-∞ n n - 4-1 -=0 limb= limcn=α ならば liman = α →00 11-00 この考え方を使う問題は,ほとんどの場合, 設問の文章にある特徴がありま す. (ポイント) さらに, lim lim (14) "=0 より lim.S,=- 16 11-00 9 「ポイント 解答 (1) (解Ⅰ) (2項定理を使って示す方法) (x+1)"=2,Chr" に x=1 を代入すると k=0 2"=nCo+mCi+nCz+... +nCn n≧1 だから 2"≧Co+nCi=1+n>n .. 2">n (解II) (数学的帰納法を使って示す方法) 2">n ...... ① (i) n=1のとき (左辺) =2, (右辺) =1 だから, ①は成りたつ 演習問題 44 極限を求める問題の前に不等式の証明があれば, はさみうちの原理を想定する 次の問いに答えよ. (1) すべての自然数nについて, 不等式 3"> n" が成りたつこと 数学的帰納法を用いて証明せよ。 "k =215730 (n=1,2, …) とおく。このとき, (2) Sm= 2 k=1 1 n 3 3+1 (3) lim Sm を求めよ. 11-00 が成りたつことを示せ. CS CamScanner 第4章

解決済み 回答数: 1
化学 高校生

中和滴定についてです。 写真にある解法1と解法2で、どうやって使い分ければいいかを教えてください。 自分にはこの2つの解法はどちらも大してやってることは変わらないと思ってしまいます。そのため、もしどっちかでしか解けない問題、またはこっちの方が楽に解けるなどがあるならば教えて... 続きを読む

<問〉 濃度のわからない希硫酸8.0mLを0.10mol/Lの水酸化ナトリウム水溶 液で中和滴定したところ, 16mLが必要だった。 希硫酸の濃度は何mol/Lか。 有効数字2桁で求めよ。 【解法1】 化学反応式の係数比から解く。 <問〉の化学反応式は, H2SO4 + 2NaOH Na2SO4 +2H2O → と書けます。 希硫酸の濃度をx [mol/L] とすると, 希硫酸 8.0mL中のH2SO4は x(mol) 8.0 [mol [mol ← 1K 1000 にしをかける」 と となり, molが求められます K 0.10mol/Lの水酸化ナトリウム水溶液16mL中のNaOHは 0.10mol 16 -X- 1K 1000 となります。 以上のことから,その量関係は次のようになります。 1H2SO4 + 2NaOH Na2SO4 + 2H2O (反応前) X- -mol 8.0 1000 16 0.10x- -mol 1000 (反応後) 0 0 中和が終わると,酸と塩基がともに 0molになります 化学反応式の係数比 (H2SO4 NaOH=1:2)を読みとって計算します。 1mol 2mol = xx H2SO4 NaOH 8.0 1000 16 -mol 0.10x- -mol 1000 H2SO4 NaOH よって, x=0.10mol/L 【解法2】 ■公式 を利用して解く。 ちゅうわてん 第12講 酸と塩基(中和) 中和が終わる点を中和点といいます。 中和点では,酸と塩基がともにÖmol と なっていましたから、 (14081TH 1) = (+10%. 17 14 OH mel 中和点までに 中和点までに 重要公式 の amol) が成り立ちます。 cs CamScanner でスキャン

解決済み 回答数: 1
数学 高校生

まず、確率は誰よりも苦手と言えるくらい悲惨な状況です。その事を理解してもらった上で回答をお願いします🙇‍♀️ この青ラインの所についてですが、何を言っているのかが分かりません。このような質問はあまり良くないことは理解しているのですが、ほんとに分からないので、どなたか猿にで... 続きを読む

ITEM 場合の数 8 同じものを含む順列 チェック! ① (2) (3) ITEM2の 「順列」 は、 全て異なるものの並べ方でした. それに対して,ここでは同じ ものが含まれている場合の並べ方を考えます. ここが「同じもの」をいったん区別して考え公式を覚える ステージ1 原理原則編 場合の数 例題 aaa Do の5枚のカードを1列に並べる方法は何通りあるか. 方針] カード どうし,カード どうしは,区別しないで数えます. 「解答」 カード a 3枚, カード2枚はそれぞれ同じものだから, 求める個数は “割り算”・・・ 5! _5・4・3・210(通り). 3!2! 3.2.2 解説 前 ITEM の 「sC2」の計算と同様, ここでも “割り算” が現れます. その理由も、実は 前 ITEM とまったく同じです. 本間では5枚のカードを aaabb a1 az b1 as b2 a1 az b2 as bi 区別しない 区別しない a ababe という立場で考えなければなりませんが,こ れは直接には “求めづらい”ので, a1 as b1 az bz la ・・・② as az b2 a1 b1 [○○] 区別 [?] のようにどうし,どうしも番号を付し て区別するという別の視点に立ってみます。 すると右図のように①の各々に対して,a, aどうし, bどうし を区別しない aどうし, bどうし を区別する 対応関係を視 6 の番号の違いを考えることで3! 2!通りの②の並べ方が対応します。 ② のように 5 枚全てを区別したときの並べ方は5!通りなので, 求める個数をxとすると, x×3!・2!=5!. 積の法則 求めたい 求めやすい 5! .. x= "割り算” 3!2! 前 ITEM と同じでしたね. [補足] 本間の答えは 5! 5.4.3.2.1 5.4 3!・2! 3・2・1×2! 2! と変形でき,これは前ITEM 例題7 の答え: 6C2 と一致しますね. これは,次のよう にして説明がつきます. cs CamScanner でスキャン 36 → 4.922.32

解決済み 回答数: 1
数学 高校生

60番の(2.ア)と61番の(1)についてですが、なぜ全く同じ問題なのにやり方が異なるのでしょう。どちらの問題も三角関数の合成をし、与えられたθやxの範囲をずらすと思うのですが、その時に上と下の範囲がsin〜とした時に解ける(有名角になる?)ときは61番のようにして、そう出... 続きを読む

99 基礎問 98 第4章 三角関数 60 三角関数の合成 (II) (1) As / のとき,f(x)=√3cosx+sing の最大値,最 小値を求めよ. (2)y=3sinzcosz-2sinz+2cost (OIS)について、 △ (7)t=sinz-cosz とおくとき,tのとりうる値の範囲を求め 1)-(-2)+/12--1 (i)は,2sin 1/2 を計算してもよい。 この場合は、加法定理を利用 します。 (+) (a)は、2sinx を計算した方が早いです. (2)(7)t=sinz-cosz=√2 sin(エース) この程度の合成は、 すぐに結果がだせる まで練習すること ytの式で表せ。 yの最大値、最小値を求めよ. (1) sin=t (または, cosz=t) とおいてもtで表すことができ 精講 ません. 合成して,を1か所にまとめましょう。 (2)IAのZ2で学びましたが、ここで,もう一度復習しておきま しょう. sin, COS, 差, 積は, sin'stcos'z=1 を用いると, つなぐことができる. 「解」 答 (1)/(x)=2(sinz.cos y + cosz.sing) =2sin (+4) 合成する だから、 sin(-4) ..-1≤t≤1 (イ) t2=1-2sincos だから 3sin.rcos.(1-1) " y=1/12 (1-19-21=-12/21-2t+2号/2 y=−3 (t+²²)² + 1/3 (−1≤t≤1) (ウ) y=- 右のグラフより, 最大値 12 最小値 -2 0 2 0 ポイント 合成によって、2か所にばらまかれている変数が1か 所に集まる 第4章 (i) 最大値 7 1/3 = 1/2 すなわち、24のとき (1)-√√√√√6+√2 ・+ = (6)最小値 +1=22,すなわち、エ のとき cs CamScanner でスキャン 演習問題 60 y=cosx2sincosx+3sin's (xls) ...... ① について, 次の問いに答えよ. (1)① を sin2x, cos 2x で表せ . (2) ①の最大値、最小値とそのときのェの値を求めよ。

解決済み 回答数: 2
物理 高校生

(2)の後半の「遠心力が重力より勝っていればたるまない」から、(遠心力)≧mgという式だと考えたのですが、解答では(張力)≧0となっていてそれが何故か分かりません。θ=180°において張力がある場合下向きに力が働くと思い、だとするとたるんでしまうと考えています。解説お願いします!

チェック問題 2 振り子の円運動 糸の長さ おもりの質量mの振り 子がある。 おもりに最下点で初速度 v を与えた。 標準 6分 (1) 振れの角が0のときの糸の張力T を求めよ。 (2) 糸がたるまずに1周するには vo はいくら以上必要か。 解説 (1) 《円運動の解法》 (p.191) で解く。 STEP 1 中心は点O 2 半径1, 3速さ” M m 45 は未知。 さぁ、どうやって求める? 速さときたらエネルギー。 いまは, 摩擦熱は出てな いから《力学的エネルギー 保存則》 (p.162) ですよ。 ☐ キミの言うとおりだ。 式を立てると, Vo mg 2 = mvo -m² + mg/l(1-cos 0 ) 遠心力 図 a よって、v=√vo2-2gl(1-cose) STEP 「回る人」から見て,遠心力 m を作図 STEP 3 重力を半径, 接線方向に分解しよう。 ここで糸は伸び縮みしない ね。このことから,半径方向には確実に力のつり合いが成り立つので, v² T T = mg cos0 + v² ② mT ②に①を代入すると, Vo 2 - T=m + g(3 cosa - 2)} ...... CS CamScanner でスキャン 第15章円運動 | 193

解決済み 回答数: 2