学年

質問の種類

数学 大学生・専門学校生・社会人

積分の解き方が分かりません 教えて欲しいです🙇‍♀️

【7】2次関数 ける接線を + 16に2点A(3,10), B(5.-14)をとり y=-2x²+4x に 直線ABを1とする。 とんとなで囲まれ Bにおける接線を12, た部分の面積を 求めなさい。 Cとで囲まれた部分の面積をSとしたとき, S1 S2 を とし, 【8】 点A(1,-7)を通り2次の係数が-1である2次関数で, 2次関数 Cy=xに接す るものは2つある。 接点のx座標が小さい順に C1, C とする。 このとき、次の間 いに答えなさい。 (1) CとCの接点の座標, CとCの接点の座標をそれぞれ求めなさい。 (2) C, C., C2で囲まれた部分の面積を求めなさい。 【9】2つの2次関数 C1:y=x2-7x+10,C2: y=x^2+x+2の共通接線をと するとき,次の問いに答えなさい。 (1)の方程式を求めなさい。 (2) C1, Cz, 1 で囲まれた部分の面積を求めなさい。 【10】2つの2次関数 C1: y=x2-7x+10,Cz:y=x²+x+2の両方に接する 2次の係数が−1である2次関数をCとするとき、 次の問いに答えなさい。 (1) CとCの接点の座標, CとC2の接点の座標をそれぞれ求めなさい。 (2) C1, C,C で囲まれた部分の面積を求めなさい。 【11】 3次関数 Cy = 2x6x2 +5x+7上の点A(2,9) における接線を1とすると き,Cとで囲まれた部分の面積を求めなさい。 【12】 xy平面上の曲線 C: y=x11x²+21x-10 と直線l: y=-10x+11 で囲 まれた部分の面積を求めなさい。 【13】 xy平面上の曲線 C: y=x(x-1) と直線l: y=kx (0<k<1) で囲まれた 2つの部分の面積が等しくなるようなk の値を求めなさい。

回答募集中 回答数: 0
数学 高校生

微分についての質問です。一枚目の写真で青マーカーを引いたところには、「三次不等式はグラフを利用して求める。極値を求める必要はない。」とありますが、例題212.213では極値を出して解いている気がします。 ・なぜ例題212.213では極値を出して、例題216では極値を出して... 続きを読む

2 406 第6章 微分法改 練習 [216] **** 7956 く 50 785 2210 196 例題 216 三角不等式 **** cos 30 + cos 20+ cos >0 を満たす0の値の範囲を求めよ.ただし, 0≦02 考え方 解答 とする. 例題 212(p.402) と同様にして3次関数のグラフとx軸の位置関係を考える. まず cosa=t とおき,tの3次不等式を作る cost とおくと,002πより、 また, cos30=4cos0-3cos0=4t-3t cos 20=2 cos 0-1=2t2-1 4t3+2t-2t-1>0 したがって, 与式は, (4t-3t) + (2-1) +t>0 2t2(2t+1)-(2t+1)>0 (2t+1)(2-1)>0 ...... ② (2t+1)(2-1)= 0 とすると, tの値の範囲に注意 与式の左辺を cosで 統一する。そのとき 倍角,2倍角の公式を 利用する. ((p.269 参照) 組み合わせを考えて, 因数分解する。 [解] Commen ここ こで, 2 線が一致 200 とし, 線をも この √2 1 1 t=- 0 2' √2 2 y=4t+2t-2t-1 のグラフは, 右の図のようになる. したがって、②の解は、 ①より RD 3次不等式はグラフを 利用して考える. 極値 を求める必要はない。 30 1 <t≦1 √2 2√2 よって,t=cos 0,0≦02 より 0≤0< 単位円を利用して8の 範囲を求める. て π 第3,4象限の解と第2, 2 3 147 4 1 √2- 1象限の解は,それぞ 例 0 5 << 27 << れx軸に関して対称 10 1 x 43 7 3π 1 4π 注〉和積の公式を用いて次のように解くこともできる. (p.274 参照) ( cos30 + cos 0) + cos20>0 2 cos 20 cos 0+ cos 20>0 cos 20 (2 cos 0+1)>0 (2cos'0-1)(2cos0+1)>0 ここで, cosa=t とおくと, cosA+ cosB=2cos- A+B A-B COS 2 2 (2t2-1)(2t+1)>0 あとは、例題216と同様にして解けばよい. tan 20 + tan00 を満たす 0 の値の範囲を求めよ。ただし,0≦02 とする. 次

回答募集中 回答数: 0