学年

質問の種類

物理 高校生

・⑶についてなんで安定とわかるのか教えてください ・コリオリ力に関しては円環に束縛されているから議論が不要ということですか?

120 Part 2 109. 遠心力 運動する.さらに,この円環は,その中心Cを通る鉛直線のまわりに, 一定の角速度で回転 図のように、質量mの小球が、鉛直面内におかれた平語の円頭上に拘束されてなめらか できるものとする. 重力加速度をg, また, 円環の中心Cから円環の最下点0に向かう方向と 中心Cから小球に向かう方向との間のなす角を0 (0は図の矢印の向きを正; -m ≧0≦)とし て、この円環上に拘束された小球の運動に関する以下の問いに答えよ. 〔A〕 まず,円環が固定されて回転していない場合 (ω=0) を考える. (1) 点0から円環に沿った小球の変位の大きさが十分小さいとき, 小球の運動は点0のまわ りでの単振動とみなせる。このとき、小球の振動する周期を求めよ.ただし,角度0が十 分小さいときに成り立つ近似式 sin 0≒0を用いてよい. 〔B〕次に、円環が一定の角速度で回転している場合(ω≠0) を考える.ただし、以下の問 (2) (3) では,円環とともに回転している観測者からみたときの小球の運動について考える ものとする. (2) 角速度の大きさがある値wc より小さく,さらに, 点0から円環に沿った小球の変位 の大きさが十分小さくて小球の運動が点0のまわりでの単振動とみなせるとき, wc, お よびこのときの振動の周期を求めよ.ただし, 角度0が十分小さいときに成り立つ近似式 sin 0≒0とcos0≒1 を用いてよい。 (3) 角速度の大きさをwcより大きくすると, 円環の最下点以外の0=±0(0<br<↑の 点で小球にはたらく力のすべてがつりあう.cos , を求め, さらに、そのつりあい点が安 定か不安定かを答えよ. C 鉛直線 W 10. ......... 0 円環 小球 §2-4 慣性の法則

回答募集中 回答数: 0
物理 高校生

大阪市立大学 物理 2019 問5ですが、万有引力による位置エネルギーは考えなくてよいのですか? また慣性力を使っているので、慣性力のした仕事なども考える必要があると思ったのですがどういうことですか?

-k) 大-理系前期 のをすべて求 00/90 P, 辺BCを あるとき,P OLD 泉 l を考える. A M , β として, こで囲まれた 大阪市立大理系前期 物理 (2科目 150分) 第 1 問 (35点) 2019年度 物理 21 図1のように、地球の中心をEとし, 球形のカプセルの中心Oが,Eを中心とした等速 円運動を行っている.ここで, カプセルの重心はOと一致している. EO間の距離はであ が中心に集まった場合と等しくなることを用いて, 以下の問いに答えよ. る。 地球の質量をM,万有引力定数をGとし, 地球がおよぼす万有引力は、地球の全質量 問1 カプセルの中心の速さ, 等速円運動の周期, および角速度を求めよ. 図2のように,EとO を結ぶ直線を軸とし,Oを原点とする.EからO に向かう向き をェ軸の正の向きとする. カプセルの中に,質量の無視できる長さ 21 の細い円筒を設置し た。ここで、円筒の端はæ= -l およびæ=lであり, 円筒の中心軸は,常に軸と一致さ せている. 質量mの小球を、円筒内のx=xo (No > 0) に静かに置いたところ,軸の正の向きに動 き始めた.ここで,小球は円筒の中を, x軸にそって, なめらかに動くことができる.小球 の質量はカプセルの質量に比べて十分小さく,また, カプセルと小球間に働く万有引力は無 視できるとして、以下の問いに答えよ. 間 2小球が位置π (20≦x≦り)にあるとき、小球に働く万有引力のェ成分を求めよ。た だし,1と考え,|a| ≪1 に対する近似式 =(1+α) = 1 - na を用 いよ. (1+a)^ 問3 円筒とともに回転する観測者からみたとき, 位置にある小球に働く力の成分F を の関数として求めよ。 ただし、 問2の結果を用いよ。 また, 解答用紙のグラフ に,Fをæの関数として描け.

回答募集中 回答数: 0
物理 高校生

写真の問題についてですが、写真のPVグラフの傾きがマイナスになっていますが、なぜ傾きがマイナスになると言えるのですか?このようにpvグラフはVが増えたら必ずPは下がるのですか? (温度やエネルギーが一定ならボイルの法則からこの形になると思いましたが、問題(解説)には温度(エ... 続きを読む

25 ** 圧力 P, 体積Vのnモルの単原子気体を断熱的に微小変化させたら体積 は V + AV となった (VIVI) 気体がした仕事はいくらか。 また、温度変 化 ⊿T と圧力変化 4P はいくらか。 気体定数をR とし, PV'=一定は用いず、 微小量どうしの積の項は無視して答えよ。 25 微小変化だから, 気体がした仕事は PAV Q= 0 だから, 第1法則は 4U = 0+W よって 12/23nRAT=-PAV 4T=- 断熱膨張 (⊿V> 0) の場合には,確か に温度降下 (4T < 0) になっている。 あとの状態の状態方程式は (P+ 4P) (V+4V)=nR(T+4T) PV + PAV + 4P・V + 4P・AV 圧力が変わっ 2P 3nR =nRT+nRAT 4P 4V の項を無視し, はじめの状態方 程式 PV=nRT を用いると PAV+VAP=nRAT=-12/2PAV 4P=- このように, -4V SPAV P ているのに, はじめに仕事 をPAVと定 圧の式を用い たことに違和 感をもつ人も いるだろう。 より正確には図の台形部分 (斜線部) の面積を計算すればよい。 (P+AP)+PxAV W'= 2 P+ 4P V V+4V 微小変化だから 直線で近似 = PAV+AP AV PAV 断熱の条件は用いていないから, 一般 に微小変化は近似式としては)W'=

未解決 回答数: 1
化学 大学生・専門学校生・社会人

【急募】 大学の一般化学(量子力学)の問題です。 波動関数とか、ハミルトニアンとか、、、 わかる問題だけでもいいので解説をお願いします🙇‍♀️🙇‍♀️

全 xce 以下の問題に答えよ。 文字の定義は授業と同じ。 (1) 水素原子における電子のハミルトニアンは,次のように表される。 H² (2 0 - (1² or) + A = - 2me ər (3) • ● Cear HA EGERSAR 0. ●(r, 0,y) = Cerがシュレディンガー方程式の解になるようにαを定め, エネルギー固有値を求めよ。 答えはボーア半径 (do AREOR² = ト) を使った表記とすること。 meez (1,0p) = Crer coseがシュレディンガー方程式の解になるようにβを定め、エネルギー固有値を求め よ。 答えはボーア半径 (a 402. m₂e² を使った表記とすること。 ・規格化定数を求めるために以下の計算を行う。 空欄 ①~③を埋めよ。 以下の問いに答えよ。 AT THE ARE ● = 1 a 1 ²sine 00 (sines) + ²in²00²)- ressin20a2 Sy2dt = fffy2r2sin0drdodyを変数分離し,各変数ごとに定積分を行う。そ に関する定積分を実行すると (1) (B)-SIEDS F 9 に関する定積分を実行すると CARTE* ONE 31011218018 積分公式Sorne-br drを使ってrに関する定積分を実行すると 従ってC=1/√32ma5 水素様原子のシュレーディンガー方程式は 1²/10 a 1 ə rasino ao (1-²2 20 (²²0). + ər arl 2m (2) 水素原子における1s軌道の波動関数は Cer/ で与えられる。 ただしは規格化定数である。 動径分 VEAU 布関数電子が原子核から距離rの球面上に存在する確率密度) の極大値を求めよ。 HOFFE HISENSE CO 2 SMERES a sino 200+ E = 4πεr 1 2² Ze² y(r,0,9). ressin2002 4πεor である (ポテンシャルエネルギーの項で, e2がZe2になっている)。 以下の問いに答えよ。 100 Jy² dr VEEBR 3 TERENGUKS GA ここで各原子 (4) H2分子の分子軌道を水素の1s原子軌道XA XBの線形結合↓ =CaX^+ CaXで近似する。 軌道の中心はそれぞれ原子核 (H+) A, B である。 1電子エネルギーの期待値は=(2) Syd_cha+Cfa + 2CACBβ (8− 1)\1 = (x1 T4² dr C+C E = で与えられる。 ただしα, βはそれぞれクーロン積分, 共鳴積分であり、重なり積分は無視している。 ERSACERO 以下の問いに答えよ。 (1) Eが最小になる条件から永年行列式を導け。 永年行列式を解いて、 結合性軌道のエネルギーを求めよ。 1 514 r' =Zrとおいてrとp(r', 0,p)を用いたシュレディンガー方程式を書け。 水素原子の規格化された原子軌道とエネルギーをそれぞれce", Enとして, 水素様原子の1s軌道 のエネルギーと規格化された波動関数を求めよ。 答えにC, α, Enを使ってよい。 C²+C² (r,0,0) = E(r,0,9) (5) 異核2原子分子 AB の分子軌道を原子軌道XA XBの線形結合 = CAXA CBXBで近似すると, 1電子工 ネルギーの期待値は Sdr_chan+Cfap+2C^CBβ TOUCU BOUCA

回答募集中 回答数: 0