学年

質問の種類

理科 中学生

(2)がなぜアになるのか解説お願いします。

図1、図2のような2つのコースをつくり,次の実験を行った。 なお, 2つのコースの水平面に しゃめん かたむ はな 対する斜面の傾きはすべて同じである。 また, 小球はコース面から離れることなく, なめらかに運動 まさつ し, 小球にはたらく摩擦や空気の抵抗は無視できるものとして, あとの問いに答えなさい。 〔福井県〕 [実験] 図1と図2のコースでAに小球を 図1 小球 置き,静かに手をはなしたときの小球の運 ひかく \A 80cm 動について比較した。 (1) 図1と図2のコースで,Gにおける小球 高 60cm さ40cm 20cm 0cm B C D 20cm E F100cm -0cm のそれぞれの速さを比較すると,どのよう 200cm になっているか。 次から選び, 記号で答え 図2 小球 よ。 80cm- \A ア図1のコースの方が速い。 高さ D イ図2のコースの方が速い。 20cm G -20cm ウ 図1と図2のコースは同じ速さになる。 .0cm (2) 思考力図と図2のそれぞれのコースについて, Aに小球を置き, 静かに手をはなしてからG に到達するまでの時間を比較すると, どのようになっているか。 次から選び, 記号で答えよ。 0cm 200cm F 100cm ア図1のコースの方が短い。 イ図2のコースの方が短い。 ウ 図1と図2のコースは同じ時間になる。

未解決 回答数: 1
物理 高校生

(2)の解説にW=−0.50×1.0×9.8×l=−4.9 とありますがWの硬式はW=fxなのに何故9.8や動摩擦係数が入ってくるのですか? 何故そのあと 1/2×1.0×0²-1/2×1.0×7.0²=−4.9l l=7.0²/2×4.9 という式になるのですか? 物理基... 続きを読む

基本例題 24 保存力以外の力の仕事 点Aを境に左側がなめらかで右側があ らい水平面がある。 点Aより左側のなめ らかな水平面上で, ばね定数100N/m の ばねの一端を固定し,他端に質量 1.0kg -0.70m→ [-00000 自然の長さ→ 109,110 解説動画 -I [m〕- A あらい水平面 B の物体を置く。 ばねを 0.70m だけ縮めて手をはなすと, 物体はばねが自然の長さ になった位置でばねから離れた。重力加速度の大きさを9.8m/s2 とする。 (1) 物体がばねから離れるときの速さは何m/sか。 物体はばねから離れた後右に進み, 点Aを通過して点Bで停止した。 (2) 物体とあらい面との間の動摩擦係数が 0.50 のとき, AB間の距離は何mか。 指針 (2) 力学的エネルギーの変化=動摩擦力がした仕事 (W=-Fx) 解答 (1) 最初に物体のもつ弾性力による位置エ ネルギーはU=1/12/ -×100×0.702J ばねから離れた後に物体のもつ運動エ ネルギーは K=1×1.0×2 [J] ゆえにv=√100×0.70°=7.0m/s (2) 動摩擦力が物体にした仕事は W=-0.50×1.0×9.8×l = -4.92 [J] 物体の力学的エネルギーの変化= W より 1/12×1.0×0°-12×1.0×7.0°=-4.9ℓ 力学的エネルギー保存則より 7.02 ゆえに1= -=5.0m +1/2×100×0.70°= 1/2×1.0×μ+0 2×4.9

解決済み 回答数: 1
物理 高校生

・1枚目の写真の基本例題21(3)の解説で 式は0+1/2×50×x²とありますが(2)のB地点での位置エネルギーは0なのに、なぜ(3)ででてくる位置エネルギーはなぜ0じゃないんですか? ・2枚目の写真の基本例題22(2)の問題で解説には運動エネルギーと重力による位置エネル... 続きを読む

48 第1編■運動とエネルギー 基本例題 21 力学的エネルギーの保存 104~108 解説動画 ともになめらかな, 斜面 AB と水平面 BC がつな がっており、点Cにばね定数50N/m の長いばねが つけてある。 水平面 BC から 2.5mの高さの点Aに 質量 2.0kgの物体を置き, 静かにすべり落とした。 ただし、重力加速度の大きさを9.8m/s2 とし, 水平面 BC を高さの基準にとる。 (1) 点Aでの物体の力学的エネルギーは何Jか。 2.5m B C (2) 水平面 BC に達したときの物体の速さは何m/sか。 (3) 物体がばねに当たり, ばねを押し縮めていくとき, ばねの最大の縮みxは何mか。 指針 (2),(3) 重力や弾性力 (ともに保存力) による運動では, 力学的エネルギー (運動エネルギー Kと位置エネルギーUの和) は一定に保たれる。 すなわち K+ U =一定 解答 (1) KA+ UA=0+2.0×9.8×2.5 =49 J (3)(2)と同様に, K+U=KA+UA (2) 力学的エネルギー保存則により ばねが最も縮んだとき, 物体の速さは 0 であるから K = 0 KB+UB=KA+UA よって 0+1×50×x=49 1 よって -×2.0×2+0=49 2 v2=49 x²= = 49_7.02 ゆえに x=1.4m ゆえにv=7.0m/s 25 5.02

解決済み 回答数: 1
物理 高校生

1番の問題で写真のような解き方をしてはいけないのはなぜですか?はやめに教えてくれると有難いです🙏🏻

基本例題 40 万有引力による位置エネルギー 203,204 解説動画 地球の表面から速さで鉛直上方に物体を発射したとき, 到達する最大の 高さんを考える。 地球の半径をR, 地球上での重力加速度の大きさをg とする。 (1) 万有引力による位置エネルギーを考え, vo をg, R, hで表せ。 Vo (2)がRに比べて十分に小さいときはどのように表されるか。 iR (3)v を大きくすると, 物体は地球上にもどらなくなる。 このとき, ではいくら以上にすればよいか。 g, R で表せ。 指針 万有引力定数G, 地球の質量Mが問題文に与えられていないので, 「GM=gR2」を用いて g, Rで表す。 解答 (1) 物体の質量をmとする。 力学的エネルギー保存則より 2+ 2 mv²+(-GMm)=0+(-G Mm R RIT) (G: 万有引力定数,M: 地球の質量) 12/3m mvoz = = GMm GMm GMm R R+h R GMm R+h-R GMm h = 1 = = R R+h R R+h R R+h ここでGM=gR2 より 12mv=gR2.m h 2gRh よって No = R R+h R+h (2)んがRに比べて十分に小さいとき, 720 より (3) 地球上にもどらないようにするには,んが無限遠であればよい。 2gRh 2gh ≒0 vo=v R+h = ≒√2gh h 1+. R このとき, A = 0 より R h 2gRh 2gR Vo= = VR+h ≒√2gR R +1 h

回答募集中 回答数: 0
物理 高校生

問5で、台車から手を離した位置を基準にしているのに−mgAsin30°となっているのはなぜですか??

千葉大理系前期 2023年度 物理 31 図のように、傾きの角30°のなめらかな斜面上に質量mの台車が置かれ, そ の台車には軽く伸び縮みしない糸の一端が取り付けられている。 その糸のもう一 端は、斜面の上端に固定された定滑車と床と軽いばねでつながれた動滑車を介 して、天井に取り付けられている。 なお, 台車, 定滑車,動滑車,糸は,すべて 同一の鉛直面内にあり, 台車から定滑車までの糸は斜面と平行, 定滑車から動滑 車および動滑車から天井までの糸は鉛直で, 糸がたるむことはないものとする。 また、2つの滑車は軽く、なめらかに回るものとする。 台車が静止しているときの位置をつり合いの位置とする。図のように,このつ り合いの位置から,斜面の最下点までの距離をLとする。なお,距離L,なら びに、台車から定滑車までの距離は、後述する単振動による台車の振幅に対し て,十分に長いものとする。また,ばね定数をk, 重力加速度の大きさをgとす る。 空気抵抗や摩擦は無視できるものとして、以下の問いに答えなさい。ただ し、解答に用いる物理量を表す記号は,問題文中に与えられているもののみとす る。 a tut | 天井 重力の向き 定滑車 台車 m 食じめに、 ように L 30° 図 0000 動滑車 ばねん 床

解決済み 回答数: 1
物理 高校生

問5の力学的エネルギー保存則の、何が台車から手を離した位置の要素で、何が振動の中心の要素なのかがわかりません🙇🏻‍♀️ (個人的には1/2mv^2+1/2kA^2が振動の中心で −mgAsin30°が手を離した位置の要素だと思いました)

千葉 1 千葉大理系前期 図のように 2023年度 物理 31 角30°のなめらかな斜面上に質量m の台車が置かれ, そ の台車には軽く伸び縮みしない糸の一端が取り付けられている。 その糸のもう一 端は斜面の上端に固定された定滑車と, 床と軽いばねでつながれた動滑車を介 して、天井に取り付けられている。 なお、 台車, 定滑車、動滑車, 糸は,すべて 同一の鉛直面内にあり, 台車から定滑車までの糸は斜面と平行, 定滑車から動滑 車および動滑車から天井までの糸は鉛直で, 糸がたるむことはないものとする。 また、2つの滑車は軽く, なめらかに回るものとする。 価 台車が静止しているときの位置をつり合いの位置とする。図のように,このつ り合いの位置から,斜面の最下点までの距離をLとする。なお,距離L.なら びに台車から定滑車までの距離は、後述する単振動による台車の振幅に対し て,十分に長いものとする。また,ばね定数をk, 重力加速度の大きさを gとす る。空気抵抗や摩擦は無視できるものとして、 以下の問いに答えなさい。 ただ し、解答に用いる物理量を表す記号は,問題文中に与えられているもののみとす る。 に その e fi St と 重力の向き 台車 L 30° m 図 ■天井 Grellle 動滑車 ばねん 床 〇問1 つり合いの位置において台車が静止しているときの, 糸が天井を引く力の 大きさを求めなさい。

解決済み 回答数: 1