学年

質問の種類

数学 高校生

nは奇数であるから8でわったあまりが偶数になることはないってどういうことですか??

LO は3で割り切れ P.544 基本事項 演習 例題 132 合同式を利用した証明 (2) [千葉大 ] n 使用して証明してみ または2ということ 二、 次のようになる。 ■2 (mod3) のとき の倍数である。 は120 は奇数とする。このとき,次のことを証明せよ。 12-18の倍数である。 (3) (2) は3の倍数である。 演習 131 指針 明 決まった数の割り算 (倍数)の問題では合同式の利用による解答を示す。 (1)は法8の合同式を利用し、(2)は法3の合同式を利用することはわかるが,(3)を 法 120 の合同式利用で進めるのは非現実的。 そこで (1),(2)(3)のヒント に従って考えると n-n=n(n2+1) (n2-1) (2)から、3の倍数→↑↑ は8×3=24 の倍数 L (1) から, 8の倍数 120÷24=5であるから後はn-nが5の倍数であることを示せばよい。 煩雑になるので, 解答 13) は省略した。 し (1) n は奇数であるから, 8で割った余りが偶 数になることはない。 ゆえに n 1 3 5 7 n² 1 9=1 25=1 49=1 n=1,3,5,7(mod8) のように最 n2-10 0 0 0 このとき,右の表から 断っておくこと。 n2-1=0(mod 8 ) よって, nが奇数のとき,2-1は8の倍数である。 (2)=0,12(mod3) のと n 0 1 -= 1 (mod3) き右の表から n5 0 15 1 25=2 2||| =1 (mod 3 ) n-n=0 (mod3) n5-n 0 0 0 条件では, nは奇数であ (mod m), (3) n-n=n(n+1)(n²-1) よって, n-nは3の倍数で ある。 るが, すべての整数nに ついて, nnは3の倍 数である。

解決済み 回答数: 1
数学 高校生

1番について質問です 私はD<0として計算したのですが,どの考え方が違うのか教えてください。

演習 例 131 2つの2次関数の大小関係 (1) 000 2つの2次関数f(x)=x2+2ax+25,g(x)=-x2+4ax-25がある。次の剣 成り立つような定数αの値の範囲を求めよ。 (1) すべての実数xに対してf(x)>g(x)が成り立つ。 (2)ある実数xに対してf(x) <g(x)が成り立つ。 【指針 y=f(x), y=g(x) それぞれのグラフを考 えるのではなく, F(x)=f(x)-g(x)とし、 f(x),g(x)の条件をF(x)の条件におき 換えて考える。 (1) y=f(x) y=g(x)/ -> =F( 0 f(x う (1) (2) ly=f(x) y=F(x) A (1) すべての実数xに対してf(x)>g(x) すべての実数xに対してF(x)>0 (2) (2) ある実数xに対してf(x)<g(x) 大 ある実数xに対してF(x) < 0 このようにおき換えて, F (x) の最小値を 考えることでαの値の範囲を求める。 y=g(x) [補足] 例題 115で学んだように, 判別式D の符号に着目してもよい。 F(x)=f(x)-g(x) とすると 解答 ある 0=2(x-2)²²+50 1 F(x)=2x2-2ax+50=2x- (1) すべての実数xに対してf(x)>g(x)が成り立つことは, すべての実数xに対してF(x)>0, すなわち [F(x) の最小値]>0 が成り立つことと同じである。 F(x)はx=1で最小値 - 04 +50 をとるから よって - (a+10)(a-10) < 0 ゆえに 2 +50 > 0 検討 -10<a<10 (2)ある実数xに対してf(x) <g(x)が成り立つことは, ある実数xに対してF(x) < 0, すなわち [F(x) の最小値] <0 が成り立つことと同じである。 a² 「あるxにつ ゆえに (a+10)(a-10)>0 が成り立つ は が少なくと あるとい よって +50<0 2 よって a<-10,10<a 習 2つの2次関数f(x)=x2+26+? である。

解決済み 回答数: 1
数学 高校生

赤いマーカーがされているところは暗記でしょうか? なぜマーカーのところが成り立つのかわかりません

「苦手 66 第3章 2次関数 基礎問 38 最大・最小 (IV) yがすべての実数値をとるとき, z=x²-2xy+2y2+2c-4y+3 について、 次の問いに答えよ. (1)yを定数と考えて, xを動かしたときの最小値をyで表せ (2)(1)のmにおいて,を動かしたときの最小値を考えることで ぇの最小値とそのときのx,yの値を求めよ. 変数が2つ(xとy)ありますが, 37のように文字を減らすこと 39 最大 4 △ABCにお 上に AD=xと 垂線 DE, DF (1) 長方形 DE (2) Sの最大値 精講 できません。このような場合でも,変数が独立に動くならば、 の文字を定数と考えることによって,最大値や最小値を求められます 精講 長方形の いのです 解答 (1) z=x2-2(y-1)x+2y2-4y+3 ={x-(y-1)}-(y-1)2+2y2-4y+3 ={zx-(y-1)}2+y^-2y+2 (1) AD: DF = 式をxについて整理 ◆平方完成 よって,m=y-2y+2 また, BD (5-x): I S=DF- x=0,y=1のとき 最小値1をとる. (2)m=y-2y+2=(y-1)2+1を動かしたときの式 .z={z_(y-1)}+(y-1)2+1 {x-(y-1)}2≧0, (4-1)2≧0 だから x(y-1)=0 かつ, y = 1, すなわち (2) DF>0, A,Bが実数のとき 12 S= 25 A2+B2≧0 よって、 等号は A=B=0 きりたつ その2つの内かりならば ポイント Z={0}+0+1 最小値1とわか 2変数の関数の最大・最小を求めるとき,それらが独 立に動くならば、片方を定数と考えてよい ポイント 演習問題 39 演習問題 38 x, y がすべての実数値をとるとき, 3.x'+2xy+y^+4m-4y+3の最小値を求めよ. 右図 長方形 面積S

解決済み 回答数: 1