数学
高校生
解決済み

1番について質問です
私はD<0として計算したのですが,どの考え方が違うのか教えてください。

演習 例 131 2つの2次関数の大小関係 (1) 000 2つの2次関数f(x)=x2+2ax+25,g(x)=-x2+4ax-25がある。次の剣 成り立つような定数αの値の範囲を求めよ。 (1) すべての実数xに対してf(x)>g(x)が成り立つ。 (2)ある実数xに対してf(x) <g(x)が成り立つ。 【指針 y=f(x), y=g(x) それぞれのグラフを考 えるのではなく, F(x)=f(x)-g(x)とし、 f(x),g(x)の条件をF(x)の条件におき 換えて考える。 (1) y=f(x) y=g(x)/ -> =F( 0 f(x う (1) (2) ly=f(x) y=F(x) A (1) すべての実数xに対してf(x)>g(x) すべての実数xに対してF(x)>0 (2) (2) ある実数xに対してf(x)<g(x) 大 ある実数xに対してF(x) < 0 このようにおき換えて, F (x) の最小値を 考えることでαの値の範囲を求める。 y=g(x) [補足] 例題 115で学んだように, 判別式D の符号に着目してもよい。 F(x)=f(x)-g(x) とすると 解答 ある 0=2(x-2)²²+50 1 F(x)=2x2-2ax+50=2x- (1) すべての実数xに対してf(x)>g(x)が成り立つことは, すべての実数xに対してF(x)>0, すなわち [F(x) の最小値]>0 が成り立つことと同じである。 F(x)はx=1で最小値 - 04 +50 をとるから よって - (a+10)(a-10) < 0 ゆえに 2 +50 > 0 検討 -10<a<10 (2)ある実数xに対してf(x) <g(x)が成り立つことは, ある実数xに対してF(x) < 0, すなわち [F(x) の最小値] <0 が成り立つことと同じである。 a² 「あるxにつ ゆえに (a+10)(a-10)>0 が成り立つ は が少なくと あるとい よって +50<0 2 よって a<-10,10<a 習 2つの2次関数f(x)=x2+26+? である。

回答

✨ ベストアンサー ✨

それでもいいです
同じ結果が得られます
異なる結果になるなら、
自分の答案を載せないと何も言えません

s

ありがとうございます

この回答にコメントする
疑問は解決しましたか?