学年

教科

質問の種類

数学 大学生・専門学校生・社会人

( 1) 絶対値xの範囲はどうやって決めたのですか? おそらくg (x)である分母の部分は絶対に0になってはいけないから0にならんように範囲を取っている。 でもその場合,なぜ開区間(0,π)だけでいいんですか?開区間(π,2π)でもg '(x)≠0【ロピタルの定理の【2】参... 続きを読む

13 ロピタルの定理 分析でてきたら⇒ロピタル 10563 ロピタルの定理 開いて、 0-(1-5) mil 基本 例題 057 不定形 (号)の極限① ★★☆ 以下の極限値を, ロピタルの定理を用いて求めよ。 mil (1−cosx)sinx -0 (1) lim ex-1-x sinhx-x x0 x−sinx (2) lim (3) lim x→0 x-0 sinx-x 指針 0 fin mil いずれも の不定形の極限である。 f'(x) gix). I g'ix) 0-(x-xdnie) mil (E) 定理 ロピタルの定理 αを含む開区間I上で定義された関数f(x), g(x) が微分可能で,次の条件を満たすとする。 [1] limf(x)=limg(x)=0 x→a x-a [2] xキαであるI上のすべての点xでg'(x) ≠0 '(x.doia) f'(x) [3] 極限 lim が存在する。 x-a g'(x) f(x) このとき, 極限 lim x-a g(x) x-a も存在し lim -=lim ig(x) x-a g'(x) f(x) f'(x) が成り立つ。 mil x0 0<|x| <πにおいて {(1-cos x)sinx}' lim lim ...... 【不定形の極限が現れる場合, f" (x), g" (x), f'(x), g" (x), が存在して定理の条件を満 たすならば,ロピタルの定理は繰り返し用いてよい。 詳しくは 「数研講座シリーズ 大学教養 微分積分」 の112~119ページを参照。 解答 (1) lim{(1-cosx)sinx}=0 かつ lim(x-sinx)=0 x→0 mil= nia- (x−sinx)=1-cosx+0 sinx+cosx−cos x drianil [1] の確認。 mil [2]の確認。 x→0 (x−sinx) x→0 1−cosx 0800- N Fox) cosx-cos 2x =lim ① 1−cosx x0 cos"x-sin'x=cos2x -zag() mil ここで ここでLim(cosx-cos2x)=0 かつ lim (1-cosx) = 0 [1]の確認。 x→0 x→0 もう一度 0<x<πにおいて (1−cosx)=sinx=0 [2] の確認。 ロピタルの 選ぼう! また lim a x0 (cosx-cos 2x)' (1-cos x)' 2sin2x−sinx =lim x→0 sinx [3] の確認。 =lim (4cosx-1)=3 x-0 よって,ロピタルの定理により, ①の極限値も存在して3 (1−cosx)sinx に等しいから lim x-sinx x-0 -=3 4sin2x=2sin x cosx (2) lim (ex-1-x)=0 かつ limx2=0 x→0 x-0 x=0において (x2)'=2x=0 [1]の確認。 [2] の確認。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

(2)について どうゆう手順でとき進めて行くんですか? また、なぜδは最小の値をとるんですか? 図とか想像出来ていないので教えて欲しいです。

48第2章 関数 (1変数) 基本 例題 030 E-8 論法による等式の証明 次の等式をE-8論法を用いて証明せよ。 (1) lim (5x-3)=2 (2) lim (x2+1)=2 x-1 1 基本 指針 (1) とも, 左辺の極限値は存在して, 右辺と一致することは,すぐにわかる。 そのこい E-8論法を用いて証明せよとあるから、関数の収束の定義を今一度確認しておこう。 定義関数の極限 (E-8論法 ) 任意の正の実数に対して、 ある正の実数8 が存在して、f(x)の定義域内の 0<x-a|<8であるすべてのxについて|f(x)-α|<e となるとき、関数f(x)は 12203054 [oclx-alk8 Hon-alc x→αでαに収束するという。 ⇒ (1)証明すべきことは、「任意の正の実数に対して、ある正の実数が存在して 0<|x-1|<8 であるすべてのxについて (5x-3)-2|< が成り立つ。」である。 基本 例題 031 €18 下の指針の定理について, (1) 下の関数の極限の (2) 下の, 合成関数の極 (5x-3)-2|=5|x-1|により, | x-1 <8ならば5|x-1|<5δ であることを利用すれば、 い。 (2)証明すべきことは、 「任意の正の実数に対して、 ある正の実数δが存在して 0<x+1|<8 であるすべてのxについて | (x2+1)-2|<e が成り立つ。」 である。 |(x+1)-2|=|(x+1)(x-1)|=|x+1||x-1|である。 x-1 であるから,xが-1に い状況のみを考えればよく、例えばx+1|<1 すなわち-2<x<0であればx-1|<37 ある。 299- 指針定理 関数の極限の性質 関数f(x), g(x) お したがってδを1より小さくとるとき,x+1| <δであれば | x+1| <1であり、このとき |x2+1-2|=|x+1||x-1|<3|x+1| <38 となる。 これを利用すればよい。 [CH|A|R|T-8 論法が先,8が後 解答 (1) 任意の正の実数e に対して, 8= m とする。 d= 5 このとき,0<|x-1|<8=1であるすべてのxに対して 与式のxに1を代入す れば極限値が2である ことはすぐにわかる。 |(5x-3)-2|=5|x-1|<58=e よって lim (5x-3)=2 (2) 任意の正の実数』に対して,=min {1, 2} とする。 このとき, 0<|x+1|<8であるすべてのxについて、 |x+1|<1であるから x→1 |x-1|=|(x+1)-2|≦|x+1|+2<1+2=3 また,x+1|< であるから |(x2+1)-2|=|x+1||x-1|<13×3=e よって lim (x2+1)=2 X-1 指針にある通り後の 計算を見越して,ô= としている。 < (1) と同様に,等式の極 限値が2であることは すぐにわかる。 三角不等式。 [1] lim {kf(x)+ x-a [2] limf(x)g(2 xa 定理 合成関数の極 関数f(x), g(x) このとき,合成関委 E-δ論法による証 対応する の値を (1) f(x) g(x) の極限 る。 関数の値 える。 (2) 合成関数 f(a) に近づ 解答 (1) 性質 [2] を任意の limf(x)= x-a 0<\x-a 成り立つ ここで, c0 から limf( x-a 48は1との大きく ない方をとればよい。 更に、指針にある通り、 後の計算を見越して 8=1としている。 0<\x が成 lim x-a

未解決 回答数: 1
数学 大学生・専門学校生・社会人

【ε-δ論法_連続性の証明】 参考書内の演習問題についてです。 以下①~③の3点教えてください。 ▼画像の赤枠について ・①なぜ|x-1|²がδ²に変化するのでしょうか? ・②δ² + 4δ - ε = 0がなぜδ = -2±√(4+ε)になるのでしょうか? ... 続きを読む

lim∫(x)=f(1) を示すための - 論法は次の通りだ。 x→1 > 0, 80s.t. 0<x-1|<8⇒\f(x) f(1)| <e 解答&解説 Yɛ>0, ³8>0 s.t. 0<|x-1|<8⇒\ƒ(x) −ƒ(1)|<ɛ (*) このとき, lim f(x)=f(1) となって, f(x)はx=1で連続と言える。 ナ 正の数』をどんなに小さくしても、 ある正の数 が存在し, 0<x-1|<8 ならば、 || (x) - f(1) | <e となるとき, limf(x)=f(1) が成り立つ。 連続条件 よって, (*)が成り立つことを示せばよい。 0<|x-1|<8のとき, |f(x) f(1)|=|x'+2x-3|=|(x-1)(x+3)| = |(x−1){(x−1)+4}| =|x-1+4|x-1|- < 82+48 1²+2+1=3 公式: ||A+B|≦|A|+|B|| を使った! + ヒント! が成り立つことな 解答&解説 Y>0, ³8 f(x) f(1) | <82+48 < g をみたす正の数 8 の存在を 示せばよい。 82 +48g < 0 をみたす の範囲をで表す。 このとき, lim よって, (* 0<|x-2 ( ':' |x-1|<8) ゆえに,正の数がどんなに小さな値をとっても, 8' +48 - <0 をみたす正の 数δ が存在することを示せばよい。 この不等式を解いて、 -2-√4+ <8<-2+√4+8 百 8 の2次方程式: 82+48-8 = 0 の解δ=-2±√4+6 これを使った! lg(x よって,どんなに小さな正の数が与えられても, 8 <-2+v4+c をみたす正 の数 8 が存在するので, (*)は成り立つ。 これで, f(x) が x=1で連続であることが示された。 … (終) W

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

ε-δ論法による証明がわかりません。 (1)の波線部の不等式がどこから出てくるのか教えていただきたいです。 ε/2Mというのはどこから出てきたんですか?

基本例題031-8 論法による基本定理の証明 下の指針の定理について, 以下の問いに答えよ。 (1) 下の, 関数の極限の性質の [2], および [3] を,e-8 論法を用いて証明せよ。 (2) 下,合成関数の極限をe-8 論法を用いて証明せよ。 指針定理関数の極限の性質(スロー(x)=(x)ノー 関数 f(x), g(x) および実数 α について, limf(x)=a, limg(x) =β とする。 [1] lim{kf(x) +1g(x)}=ka+1β (k, lは定数) x→a x→a [2] limf(x)g(x)=aB [the lim (1/(x) 定理 合成関数の極限 4179744571 x→a x→b YOU 関数 f(x), g(x) について, limf(x)=b, limg(x)=αとし, g(x)はx=6で連続とする。 このとき,合成関数 (gf) (x) について, lim (gf) (x)=α が成り立つ。会場 x→a x→a x→a x→a xx→a [3] lim x→a f(x) a g(x) B E-8 論法による証明であるから、 「 e を任意の正の実数とする」から始める。そして,これに 対応するの値を検討する。 次のような方針で証明を進める。 f(x) (1) 1 1 の極限を求める問題は、f(x) x- g(x) として g(x) g(x) る。 関数の値と極限値との差の絶対値を評価し,途中でどのような仮定が必要になるかを考 05.10 える。 So I had lot (2) 合成関数g (f(x)) の値を g (f(a)) に近づけるには,gの中にある f(x) をどの範囲で x→a == (ただし,β≠0) eを任意の正の実数とする。 limf(x) =α であるから, ある正の実数品。 が存在して, ()+6011-5 0<|x-a|<品。 であるすべてのxについて|f(x)-α|<s が f(a) に近づければよいかを考え,それに応じてxをどの範囲でαに近づけるか考える。 1o C (+18 解答 (1) 性質 [2] の証明 成り立つ。このとき,α-e<f(x)<α+ であるから |f(x)|≦max{|a-el, |a+c|} S3A/ ここで,M=max{|α-el, |α+el, |β|} とおく。 e≠0 より |a-el, late | の少なくとも一方は0でない から M>0 limf(x) =α であるから,ある正の実数 Ô が存在して E 0<|x-a|<ふであるすべてのxについて|f(x)-al< AMICIAS が成り立つ。 limg(x) =βであるから、 ある正の実数 82 が存在して 1 B を示す問題に帰着させ e-8 論法による証明の 開始。 Jel 4

解決済み 回答数: 1
1/3