学年

教科

質問の種類

数学 大学生・専門学校生・社会人

大学数学です。 本当に分かりません。 参考の教科書やヒントなどなく、困っています、。 回答の流れなど詳しく書いて写真などで送ってくださるとすごく助かります😭🙇🏻‍♀️ よろしくお願いします、💦

中等教科教育法数学 ⅡI 第2設題 1 3地点 P, Q, R があり,PからQを通る Rまでの道のりは7200 [m] で, P から Q までの道のりと Q からRまでの道のりは等しい. A, B,Cの3人が、 次のようにしてPからQまで手紙を配達した: 2 ・Aは10時にPを毎分 75 [m] の速さでQに向かって出発し, B に出会い, 手紙を渡してすぐに 向きを変えて来た道を同じ速さでPに戻った. ・BはAより何分か遅れてQを毎分90 [m] の速さで P に向かって出発し, A に出会い, 手紙を 渡してすぐに向きを変えて来た道を同じ速さでRに向かった. そして, 出発点Qを通過した後 Cに出会い, 手紙を渡してすぐに向きを変えて来た道を同じ速さでQに戻った. ・CはBより何分か遅れて R を毎分125[m] の速さで Q に向かって出発し, B に出会い, 手紙を 受取りすぐに向きを変えて来た道を同じ速さで R に戻り, 手紙は R に届いた. 4 3人が手紙の受け渡しを終えてそれぞれの出発点に戻るまでに, AとBの歩いた時間は等しく, A と Cの歩いた道のりは等しかったという. (1) 手紙が R に届いた時刻を求めよ. (2) B が Q を出発した時刻, C が R を出発した時刻をそれぞれ求めよ. 次のメモを持ってあなたは宝島を目指した: 1 5 5 5 5 5 5 5 55 島の中央に桃栗 柿の木が立っている野原がある. 桃の木から栗の木に向かって歩数を数えて歩く. 栗の木に着いたら右へ90° 向きを変 えてさらに同じ歩数を歩き, そこに杭を立てる. 桃の木から柿の木に向かって歩数を数えて歩く. 柿の木に着いたら左へ90° 向きを変 えてさらに同じ歩数を歩き, そこに杭を立てる. ・2つの杭のちょうど真ん中の位置に宝が埋まっている. . 宝島に渡り目的の野原に着いたあなたは愕然とした. 桃の木だけが枯れてしまったようで跡形もなく なっていた. あなたは宝を掘り当てることができるかを論ぜよ. 3 紙を筒状に丸めて半径r, 高さんの直円筒をつくる。 図のように, 直円筒の高さ方向に平行で, 円筒の中心を通る長方形 ABCD を考 える. この長方形の頂点 B, D を通り、この長方形に垂直な平面 P で直円筒を切る. B (1) 平面 P 上の, 切り口で囲まれた部分の面積を求めよ. (2) 直円筒を切ってできた2つの部分をそれぞれ広げて平面とし たとき, この平面上で切り口はどのような曲線になっているか論 ぜよ. 長さ1の正方格子を考える. 格子点上に頂点にもつ正5角形は存在しないことを示せ . A 5 4桁の自然数nについて, n3 の値の下4桁が となるものを全て求めよ. 6 縁が楕円の形をしたビリヤード台を考える. この楕円の1つの焦点から玉を突くと、 緑に当たり跳ね 返った玉はもう一方の焦点を通過する. これを示せ .

解決済み 回答数: 1
公務員試験 大学生・専門学校生・社会人

練習問題②のstep2までは理解できたのですが、p.203の、AとBが5:3の速さの比で進むのですから、Aは残りの道のりの8分の5進んだ時にBと出会うというところが理解できません。 どうして、10:10に出発して20分かかる道のりの8分の5進んだところで出会うと分かるので... 続きを読む

練習問題 ② 市とQ町は1本道で通じている。 AはP市を午前10時に出発し てQ町に午前10時30分に到着した。 B は Q町を午前10時10分 に出発してP市に午前11時に到着した。 2人はそれぞれ一定の速さ で歩いたとすると,途中でAとBがすれ違った時刻として正しいも のは、次のうちどれか。 1 午前10時21分30秒 2 午前10時22分30秒 3 午前10時23分30秒 4 午前10時24分30秒 5 午前10時35分30秒 Step 「時間の比は? AはP市を10時に出発して Q町に10時30分に到 着,BはQ町を10時10分に出発してP市に11時に到 着ですから, PQ の距離をAは30分, B は 50分かかっ て歩いたことになります。 同じ距離を歩いたときの時間 の比は30:50=3:5です。 P市 ( 10時) step ② 速さの比は? AとBは同じ距離を歩いたので, 歩く速さの比は, 時間の逆比で5:3です。 Step③ 10時10分のAの位置は? では,Bが出発する 10時10分に Aはどこを歩いて いるでしょうか。 Q町 20(分) ( 10時30分) 10 (分) P市を10時に出発してQ町に10時30分に到着,こ の間に歩く速さは変わらないので, 10時10分にはP 市から Q町までの道のりの 1 2 進んだところにいるはず [H17 大卒警察官】 ! 速さ・時間・ 距離の比 時間が一定のとき. 速さの比がa:bなら. 距離の比もa:b ・速さが一定のとき. 時間の比がa:bなら. 距離の比もa:b ・距離が一定のとき 速さの比がa:bなら. 時間の比は b:α 逆比 になる 同じ距離を進むのであれ ば、速さが速いほどかかる 時間は短くなると考えると わかりやすいですね。 5,Aは残りの道のりの進んだときに, B と出会います。 です。また, AとBが5:3の速さの比で進むのですか Pifi Q町 P市 10時10分に出発して, 20分かかる道のりの進んだと ころで出会うので, 20 x- W →A ⑤ 出会う時刻は10時10分の12分30秒後で10時22分30 秒になります。 OT 1 x = 12.5〔分後], 10 A 20 T -A- B 3 別解 ダイヤグラムでもOK 3分で開ける! テーマ18であつかったダイヤグラムの考え方でも解 くことができます。 この問題の様子をダイヤグラムに表 すと、次の図のようになります。Aの進む様子は OX, Bの進む様子は WZが表します。 ① Y = 22.5 Q町 X 正答: 2 U Z /30 40 50 60 比をひっくり返したもの・・・・ ではありませんよ。 13:2の比は1/35 : 12/12 す。 ただ 1/3/12/2=2:3で 逆比? すから、2つの数の比のと きは, 比をひっくり返した ものになるのです。 また、3つの数の比. たと えば4:36の逆比は △ YOZ と△ YXW が相似ですから, OY : XY = OZ: XW=60:20=3:1より, OYOX = 3:4 また, OTY と OUX が相似ですから, OT: OU = OY: OX = 3:4 1:1/13:1/6=3:4:2 OUの長さが30分なのでOT の長さにあたる時間は, OT:30 3:4 OT × 4 = 30 × 3 40T = 90 90 = です。 逆比は反比ともい い 反比例を考えることと 同じです。 したがって, 出会う時刻は10時22分30秒後です。 時間をそろえてから 距離を考えて! この問題では、Aが出発す る時刻とBが出発する時 刻が同じではないので 遅 れて出発するBの時刻 ( 10 時10分) でのAの位置を 求めてから問題を解きま す。 距離の比が速さの比と 同じになるのは 「進んだ時 間が等しいとき」であるこ とに注意しましょう。 第5得点アップ保証!最強の解法はこれだ 203

解決済み 回答数: 1
1/3