学年

教科

質問の種類

数学 大学生・専門学校生・社会人

下から6行目が分かりません。 「f'(x)に上の公式を適用~」とありますがε1は微分されてないのは何故でしょうか?上の方にε1はxの関数と書いてあるので定数ではないですよね? また、下から2行目の「最後の項をε2とおくと~」で (6)式でなぜε2/(x-a)²の極限をとっ... 続きを読む

第1章 関数の展開 問1 次の関数の() 内の点における1次近似式を求めよ。 (1) f(z) = sin e (r=0) (2) g(r) = V ("=1) (2) 式において、左辺から右辺を引いた差で定まるeの関数を e, とおく。 f(x) - f(a) -f(a)(2-a) %3D €y 関数 E,= €, (z) はaを含む区間で連続で リ= f(z) lim e, = €, (a) =0 エ→a となる、さらに、 (3) を変形した式 f(x) E1 f(x) - f(a) E1 -f(a) = C-a -a と(1)より、次の式も成り立つ。 f(a) f-to- foalcce - falGca, E」 lim = 0 エ→a C ーa (3), (4) より次の公式が得られる. 1次式による近似 E1 f(x) = f(a) + f (a) (x-a) +£. ただし lim = 0 エ→a C - 0 次に,関数f(z)は定数aを含む区間で2回微分可能とする。 f'(z) に上の公式を適用すると f(z) = f(a) +f"(a)(x-a)+e 両辺をaからまで積分して | r() da= | f) +"@(a-a)+s,}dr a f"(a) f(x) - f(a) = f(a)(r-a)+(-a)"+ / e, de (5) 2 右辺の最後の項を ea とおくと, ロピタルの定理と(4) より E2 Eg E1 lim (r-a)? lim lim 2(r -a) = 0 ニ エ→a エ→a エ→a

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

統計学の偏相関係数について自分の解釈があっているかの確認をしたいのですが、 こればかりは自力ではできないので確認をお願いしたいです。 (画像は参考にした教科書の内容です。ファイルサイズの問題で必要な情報をすべては載せられませんが一応貼ります。) この教科書の内容は ある人... 続きを読む

Gのデータに対して、yおよびxを戦りの像数から下引する次のような る8,備相関係数 のデータに対して,yおよびえを吸りの象数から下刊する次のような S くうか考えられ,それらの影響も限形的であれば、上の1次式のモデルの愛 SyS」 (間題A1.6)。 親がふえるこになる。また,もしこれらの変のうち採力国)が2次関数的 に移響する可能性がある場合には、当のほかにx=という4満日の変数 を予デルに加えておけば、 2次開数的な影響も上のような線格デルにより 分析ることができる。 コーつの重国帰をデルを考える。 -ッ pe ただし、 Sy S Sy S エ-dx p+る。 -のとき、最小2堀法によって求めた重回帰式は次のょうになる。 S, S1 S12 S,p いま去6のように1つの目的変数とp個の説明変数光認を に n個のデータ(数値)が与えられたとしよう. S1y S Sg Sp S= たたし。 表6 重回帰分析の場合のアータ 22 1 帰分析法 S S 日的変哉 明 数 S Sp Sp"Sp S. S 81式のいかをyおよびからあ,為,Xoの回帰が消去されたときの 偏相関係数(partial correlation coefficient)という。 テータ号 そしてS,は行列式Sの1行」列の余因了(行」列の要素を取り除いて作。 Sは式のSの2行2列2)余国子からさらに1行1列の余因子をと 1 『1 『1 T」 ったもの。 S はSの2行2列の余囚子からさらに1行+1引の余因子をと 2 エ以 た行列式に(一1}* をかけたもの)。 | 式からわかるように00式で小される偏相関係数は(a,る,…,ズ)の影響 を除いたyととの相関係数と考えることができる。同様にしてyとxj- っかもめ。 1,2,p)の間の偏相関係数を定識することができる。 また。式に小す行列式Sとその余因子を用いると、ル は次のよう! S , S. も同様に考える。 エ J= (-arュー+) , =(ddエ み) も書ける。(町E A1.7)。 Sie VS」Sa 51と同様にズ,海。, y からyの値を子測するとき、,た。, とりの 関係を示す一つの数式モデルを設定しなければならない、この数式モデル(予 第1式)を11のように与える,必は- , -…, e だけでは説明しきれない部 分の予測誤差を表す。 『122.p=ー こおくとき、変数とpの単相相関係数は次のように書ける。 S Sa, Saは行列式Sの1行1列, 2行2列,1行2列の余因子 去8に示すデータで、yおよびから,石のの国帰が消去されした 5aト ただし、 『121 -ー -4十aエ,サ角約」十, +山i-6 この式を、線形重回帰モデル(linear multiple regression model} と呼ぶ中 * Sas Ss 例7。 ただ。 ときの偏相関係数()を求めよ。 [解] 例6の解答の中に示す行列式Sと式より 回滑の場合(x,平面上のヵ個の点の集まりドに直線をあてはめたが、重回帰 1、 ( , Spー -1 場合には(, , y)の(ゆ+1)次元空間での の点の集まりに対してき次 S』 VS」S。 元超平面 S--(-は)(カー)。 『yト23- -6.941×10° V6171×10×2.011×10 0.623 をあてはめ、それによって説明変数の他x,あ から目的変数の値 を予測する。このときの誤差は式から去?のように表される。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

青チャートの基本事項の説明がわからず 質問しました。 写真の黄色いマーカー部分なのですが なぜc>0でCの値は正なのに |x|=cでx=+-cなのでしょうか?x=cではないのですか? かなり初歩の質問で恐れ入ります。

基本事項 [3] 1次不等式 不等式のすべての項を左辺に移項して整理したとき, ax+6>0, c うに,左辺がxの1次式になる不等式を,xの1次不等式という ただし,a, bは定数で,aキ0とする。 4 1次不等式の解法の手順 ① 移項してax>b(ax>b)または ax<b(ax<b)の形にする ② 次に,両辺をxの係数 aで割る。a<0のときは不等号の向 5 連立不等式 いくつかの不等式を組み合わせたものを 連立不等式 といい,そ に満たすxの値の範囲を求めることを,その連立不等式を解く 絶対値を含む方程式·不等式 c>0 のとき 方程式 |c|=c の解は x=±c 名れるれ あるとさ0く3 注意 「xく-C, c<x」 は, x<-cと c<xを合わせた範囲を 不等式 ||<cの解は 不等式 |x||>cの解は ーC<x<c xく-c, c<x くい 解説 をこ 不等式の解法> にの満たすべき条件を表した不等式(これをxについての不等式と う)において, 不等式を満たすxの値を, その不等式の 解 といい 下等式のすべての解を求めることを, 不等式を解く という。なお 下等式のすべての解の集まりを, その不等式の 解 ということもあ 「笛武においても。前ページの2不等式の性質1を使って, 等式

未解決 回答数: 1
1/2