学年

教科

質問の種類

数学 大学生・専門学校生・社会人

高校数学のことで質問です🙋 赤線で囲んだ中で垂直な直線を求めていると思いますが、その過程でどのような考え方を用いて導かれたのかが分かりません。 よろしくお願いします🙇

標を媒介変数 また,点Pは第1象限の点であるから,媒介変数の値の範囲に注意して 積Sのとりうる値の範囲を考える。 の式に代入す 解答 条件から,P(acoso, bsine) (0<< )と表される。 π 点Pにおける接線の方程式は acos o bsin x+ a² -y=1 62 すなわち (bcosθ)x+(asin0)y=ab ①1) と表される。(*) これが点Pを通るとき ①に垂直な直線は, (asin0)x- (bcos0)y=c (cは定数) casino・acoso-bcose・bsino =(a2-b2)sinOcos O よって, 点P における法線の方程式は 5/ bsine 0 R (*) 2直線が FAOqx-py+r= 直である。 なお,点(x 直線 px+g_ 直線の方 9-I + (asino)x-(bcose)y=(a-b2)sin Acose ②において,y=0, x=0 とそれぞれおくことにより (Sa²-b² 2-62 x= より ゆえに ゆえに a2-62 -cos 0, y=- -sinė a b Q(a-be cose, 0), R(0, db sino) Q(22-62 a ここで, 0<b<a, sin>0, cos0 >0より, b -sin0 < 0 であるから ...... ② [9(x-x1) このことを いてもよい。 ◄62<a² a²-b² a²-6² cos 0>0, - a b S= =1/2OQOR= (A2-62)2 1 a²-b2 a²- cos 0.. sino 2 a b OR-b (a2-62)2 Gaian-00-A8-A0=80= = -sino coso= -sin20 sin Acoso 2ab 4ab 0<<1より、0<20<πであるから π 0<sin 20≦1 20=す ときSは最 2 (a²-b²)² したがって 0<S≤ 4ab 練習 実数x, y が 2x2+3y=1 を満たすとき, x2 -y'+xyの最大値と最-

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

微分方程式について質問です🙋 ときどき、答えの方程式をどこまで整理して解答すべきなのかが分からないときがあります。 例えば写真の問題(2)のようなときです。 このままの形でよいと書かれてありますが、どういう状態で解答を終了すべきかの目安はありますか? よろしくお願いします🙇

例題8-2 ベルヌーイの微分方程式:y′+p(x)y=f(x)y") 微分方程式 y/+y=xy3 について, 以下の問いに答えよ。 (1) z=y-2 とおくとき, zが満たすべき微分方程式を求めよ。 (2) 微分方程式 y'+y=xy の一般解を求めよ。 「解説 ベルヌーイの微分方程式:y'+p(x)y=f(x)y" (m=2,3,…) は 1階線形微分方程式の応用である。z=y' -" の置き換えにより, 1階線形微分 方程式になる。 1 [解答](1)z=y-2 より, z'=-2xy-y′ :: y³y'=== Z' 2 さて,y'+y=xy の両辺をy で割ると, y_y'+y^2=x -z'+z=x よって, z'-2z=-2x ・・ 〔答〕 1階線形になった! (2) ²'2z=0 とすると, ‥. A(x)=(2x dz dx =(x-2 = 2z 両辺をxで積分すると, fzzdz=f2dx ... log|z|=2x+C z=Ae²x そこで, z=A(x) e2x とすると, z'=A'(x)e2x+2zより, z'-2z=A'(x)e2x よって,²'-2z=-2x の一般解を z = A(x)ex とすれば, A'(x)ex=-2x ∴.. A'(x)=-2xe-2x -2xe-2x)dx=xe-2x+ ₂-2x + 1² e ²³² + c) e ²¹ = x + 1²/² + ₁ e²x Cezx よって、12/20a-s+/1/2+c^ よって, z=xe 1 2 1 dz z dx e z=y^2=1/1/12より、(x+12+Ce²)y=1 ,2 =2 - 2x + C ・・・ 〔答〕 このままの形でよい。

解決済み 回答数: 1
1/4