学年

教科

質問の種類

数学 大学生・専門学校生・社会人

統計検定準1級2021年6月の問6です。 [1]の解説で、1行目から2行目に変形できるのはなぜでしょうか。 直感的には分からなくもないのですが計算過程が知りたいです。

問6 2つのグループからのデータを判別する代表的な方法に,フィッシャーの線形判 別がある。 グループ 1, グループ2の2つのグループから2次元データを収集し たものとする。それぞれの標本サイズを ni, 72 とし, データを { 1,T2,...,Zn,}, ny 1. {¥1,92,.., Yng} とおく。 また, それぞれのグループの平均ベクトルを=- n1 8 y=- 722 1 n 72 i=1 722 i=1 とおく。 ただし,n=n+n2 である。 Yi とおく。 さらに, データ全体を {Z1,Z2,..., Zn}, 平均ベクトルをえ= とおき,さらに 〔1〕 各グループの分散共分散行列 S1, S2 とデータ全体の分散共分散行列 S をそれ ぞれ S1 = S2= n1 1 n1 n2 i=1 722 i=1 n (x₁ - x)(x₁ - x) ¹ i=1 (Yi — Y) (Yi – ÿ) - S= 1/2 (2₁-2) (2₁ - 2) T i=1 Sw=115₁ +25₂ n n n2 n1 - SB = 1/¹² ( x − z ) ( x − z ) ¹ + 2/2² (ÿ – z) (ÿ – z)™ n n Dis ① つねにS> Sw+SB が成り立つ。 ② つねにS=Sw + SB が成り立つ。 ③ つねに S < Sw + SB が成り立つ。 ④ 上記に正しいものは一つもない。 と定義する。ここで「は転置を表すとする。 3つの行列 S, Sw, SB の関係につい て、次の①~④のうちから最も適切なものを一つ選べ。 ただし, P > Q は行列 P-Q の固有値がすべて正であることを意味する。 10

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

問題4の(3)が分かりません。方針だけでもいいのでご教示くださると幸いです

22:43 7月27日 (木) 3/3 ・・・ 令和5年度学校教育教員養成課程 (前期日程) 小学校教育専修算数科教育コース 中学校教育専修数学科教育コース 試験科目名 数学 問題用紙 全2枚 (その2) ⓒ 87% 問題4 N, nを整数とし, N ≧ 2, n ≧3とします。 N 個の整数 1,2, Nの中から1つ選ぶ試行を 2n 回行い,選んだ整数を順に x1,..., In, y1,..., yn とおくことで,変量x, y を定めます。 各試行におい て, 1,2,..., N のうち,どの数が選ばれることも同様に確からしいものとします。 n個のデータの 組 (πinyi) (1≦i ≦ n) について,次の問いに答えなさい。 (1) x X1 =‥‥. = In-1=1, xn = 2,y1 = 2,y2 =yn=1のとき,æの標準偏差,yの標準偏 差,xとyの共分散をそれぞれ求めなさい。 (2) の標準偏差とy の標準偏差のうち少なくとも一方が0となる確率を求めなさい。 X 2Nn-1 (3) 「xとyの相関係数が定まり,かつ,その値が1である確率」は 12/ (1¹ = ¹) より N²n-2 小さいことを証明しなさい。 問題5 平面上に2点A,B と円 0 があり, 全て平面上に固定されているとします。ただし, 2点 A, B は 円Oの外部にあるとします。 点Aを通り円Oと2点で交わるように直線を引き, この2つの 交点を M, N とします。 ここで,直線l は点Bを通らないものとします。 また,点Aを通る円 0 の接線の1つと円O との接点をTとします。 次の問いに答えなさい。 (1) 直線ℓの引き方によらず,AMAN が一定であることを証明しなさい。 (2) 3点 B,M,N を通る円を O' とします。AT\AB ならば,円 O'′ と直線 AB が2点で交わるこ とを証明しなさい。 (3) AT\AB のとき,円 O′と直線AB の交点のうち, 点 B でないものを点Cとします。直線l の引き方によらず線分 ACの長さが一定であることを証明しなさい。 B

未解決 回答数: 1
数学 大学生・専門学校生・社会人

統計学の確率密度関数の問題です。 2枚目の資料を参考にして解いていたのですが、難しかったのでどなたか詳しく教えていただくとありがたいです。

問3AさんとBさんが以下でルールが定められたゲームをする。 (ルール 1) 表に 1,裏に0と書かれた1枚のコインを, AさんとBさんがそれぞれ 2回ずつ投げる。 (ルール2) A さんの投げたコインに書かれた数を足し, その値を n とする。同様に Bさんの投げたコインに書かれた数の和も n とする。 (ルール3) -1,0,1と書かれたカードが何枚かあり、2つ束 aとbになっている。A さんは束 a から na枚のカードを引き, Bさんは束b からnB枚のカードを引く。 た だし, 2回引く場合は1枚目のカードをもとに戻してから再度引くこととする。 (補 足1も参照) (ルール4) (ルール3) におけるカードの数の積をそれぞれX,Y と書くことにする。 例えば、Aさんが2枚のカードを引き, その数が 1と1だとしたら, X = -1x1 = -1 である。 また,Bさんが1枚のカードを引き, その数が1だとしたら, Y=1とす る。(補足2も参照) そして,この数X, Y の大きい方を勝者とする。 (補足1) ルール3における束 a と束bにあるカードを引く確率はそれぞれ次で与え られているものとする。 束\数 -1 0 1 1/4 1/2 1/4 1/6 1/2 1/3 a b (補足2) A さんが1枚もカードを引かない場合, X = 0 と定義する。 同様に, B さん においてもカードを引かない場合は Y = 0 とする。 X, Y に対する同時確率密度関数をh(x,y) と書くとき, 次の問いに答えよ。 (1) n=2のときに X = 1 となる確率を求めよ。 (2) (1,-1) を求めよ。 (3) P(X = 1,Y≠0) を求めよ。 (4) AさんとBさんが引き分ける確率を求めよ。 (5) AさんがBさんに勝つ確率を求めよ。 (6) E[X] を求めよ。 (7) E[Y] を求めよ。 (8) X,Y の共分散 C' [X, Y] を求めよ。 (9) V[4X + 12Y ] を求めよ。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

これらの答えが知りたいです。 どなたかお願いします!

1. 偏りのない6面あるサイコロをn回投げる操作を考える.標本空間を Q={w1,...,wn; Wi ∈ {1,2,3,4,5,6},1<i<n} とする (上でwk はん回目の試行で出た目をあらわす) 部分集合 ACΩに対して, #A で集合Aの個数をあらわすとする. このとき はΩ上の確率となることを示せ . #A P(A) = 6n 2. 偏りのない4面あるダイスを1回投げる操作を考える.ここで標本空間を Q={1,2,3,4} とし,その上の確率Pを事象ACΩに対して P(A)= = #A で定める. (1) 事象 A = {1,2},B={2,3}, C'={1,3} に対して, A と B B と C およびCと Aは互いに独立であることを示せ . (2) 3つの事象 A,B,Cは独立でないことを示せ . (3) どれもΩ ではない任意の3つの事象は独立にならないことを示せ(ヒント: 任 意のA'c Ωが取り得る値の集合と, それらの積であらわされる数の集合を比較せ よ). 3. 関数 X を二項分布 B(n, 1/2) にしたがう確率変数とする. (1) Xが値k ∈ {0,1,...,n} をとる確率P(X=k) の値が最大となるときのんの値 を求めよ. (2) 上で求めた最大値をM(n) とするとき, limn→∞ M(n)=0となることを示せ . 関数 X をパラメータα>0の指数分布にしたがう確率変数とする. (3) X が xo > 0 以下となる確率P(X ≤ xo) が 1/2となるとき, To の値を求めよ. (4) x>0 に対して, limh+o P(x ≤X≤ x + h) の値を求めよ.

回答募集中 回答数: 0
1/4