学年

教科

質問の種類

数学 大学生・専門学校生・社会人

青チャートの式と曲線についてです。 赤枠で囲った部分は、図を書けば一目瞭然ですが、式から求めるにはどうすれば良いのでしょうか? よろしくお願いします🙇

[重要] 例題 接線の交点の軌跡 楕円x2+4y2=4について,楕円の外部の点P(a,b)から,この楕円に引いた2 本の接線が直交するような点Pの軌跡を求めよ。 [類 お茶の水大] 指針点Pを通る直線y=m(x-a)+6が,楕円x2+4y²=4に接するための条件は, x2+4{m(x-a)+b=4の判別式Dについて, D=0が成り立つことである。 また、D=0の解が接線の傾きを与えるから,直交傾きの積が-1 と 解と係数の関 係を利用する。 なお,接線がx軸に垂直な場合は別に調べる。 [参考] 次ページでは, 楕円の補助円を利用する解法も紹介している。 CHART 直交する接線 D = 0, (傾きの積)=-1の活用 解答 [1] a≠±2のとき, 点Pを通る接線の方程式は y=m(x-a)+b とおける これを楕円の方程式に代入して整理すると (4m²+1)x2+8m(b-ma)x+4(b-ma)2-4=0 (*) このxの2次方程式の判別式をDとすると D=0 ここで 12/2=16m²(b-ma)-(4m²+1){4(b-ma)-4} TRETJI =-4(b-ma)^2+4(4m²+1) =4{(4-α²)m²+2abm-62+1} ゆえに (4-a²)m²+2abm-b²+1=0 .... IE の2次方程式 ①の2つの解を α, β とすると αβ=1 - 62+1 すなわち 4-a² よって a²+b=5, a+±z [2] α=±2のとき, 直交する2本の接線はx=±2,y=±1| 863 NO (複号任意) の組で, その交点の座標は =-1 842 88-11+x20=1+ (2, 1), (2, -1), (-2, 1), (-2, -1) にある 円x2+y2=5 -√5 基本63 √√5 6754 11 -2 0 |-1 -√5 x 2 +4y²=4 判別式 P(a, b) √5 2, x (*) (b-ma) のまま扱うと, 計算がしやすい。 直交傾きの積が1 < 解と係数の関係 2次方程式 px2+gx+r=0 について =-1が成り立つとき, q^-4pr=q²+4p2> 0 となり、 異なる2つの実数 解をもつ。 [1], [2] から 求める軌跡は 68+(-3) [参考] m の2次方程式 ① が異なる2つの実数解をもつことは, 楕円の外部の点から2本の接線が 引けることから明らかであるが (解答の図参照), これは次のようにして示される。 D' mの2次方程式 ① の判別式をDとすると 2/2=(ab)²-(4-q²)(−62+1)=a²+46²-4 点Pは楕円の外部にあるから 4 +46²4(>が成り立つ理由はか.125 参照。) ゆえに D'>0 なお、一般に楕円の直交する接線の交点の軌跡は円になる。この円を準円という。 に接する2本の直線 2章 8 2次曲線の接線

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

青チャート数学1aの例題46についてです。[2]のAかつBを求めるときに2つのサイコロを区別して考えるとどちらも6が出る事象は1通りではなく2通りでカウントするべきだと思います。ですが、答えは1通りでカウントしています。なぜですか?

た。 重要 例題 46 2つのさいころを同時に投げる試行を考える。 Aは少なくとも1つの目が出る らは出た目の和が偶数となる事象とする。 おそれの事象が起こる。 (1) る確率を求めよ。 [2] ANB [3] AUB [4] ANB [2] A,Bのどちらか一方だけが起こる確率を求めよ。 全事象Uは,右図のように, 互いに排反な4つの事象 ANB, A∩B, A∩B, ANB に分けられる (p.304 参照)。 (1) [3] P(AUB)=P(A)+P(B)-P(A∩B) [4] P(A∩B)=P(A)-P(A∩B) [5] P(A∩B)=P(B) -P(A∩B) を利用。 Emp 事象であるから P(A)=1-P(A)=1- りがあるから MET ANB (2) A,Bのどちらか一方だけが起こるという事象は、A∩Bまたは ANB (互いに排反) で表される。 [2] 少なくとも1つが6の目で、出た目の和が偶数となる 場合には, (2,6),(4,6,6,2),(6,4),(6,6の5通 5 5 6236 = D(R)- P(ANB)** P(A∩B)= [5] ANB 解答 = [1] [1] A の余事象 A は, さいころの目が2つとも6でない | ⑩ 少なくとも・・・・・・・ HERON 52 11 DURS には余事象が近道 MA - the 6² 合1 62 36( = A' 基本43,44 ANBAnB ANB 369 ANBの要素を数え上げる tist.is 万針。 (検討) 指針の図を、次のように表す こともある。 2章 7 確率の基本性質

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

テキストには写真の(2.13)と(2.15)より(2.15)式の右辺、左辺の定数項について求められるとしていますが、求め方が分かりません。どのように考えた場合定数項について求められるかを教えてください

}) (0) で .11) xx-th-1² tr 1 n-1 (2.12) Page bi age 171 EN (T 20 君のこと Page +1)= 172 l を上昇階乗ベキと呼ぶ。 この両者をあわせて, 階乗ベキと呼ぶことにする。 2.3 スターリング数 2.2節で学習したように、 階乗ベキは差分演算のなかで有効な計算手段 である。 ここでは,スターリング (Stirling *3) 数を利用して下降階乗ベ キュ”と単項式”の関係を学習する。 ここでnは2以上の自然数とし ておく。 実際には、下降階乗ベキを多項式で表すこと, 単項式を下降階 乗ベキの一次結合で表すことを問題意識とする。 まず、前者については x² = x² +Nn-1,nxn-1 +...+₁,nx = Σnj,n x² in (2.13) j=0 と表せる。ここで,Vn,n=1,70,n=0, さらにnjin=0,j>nであり, 7j,n は漸化式 In=zn+in-1,n n - njn+1=nj-1,n nnjin, 1≤j≤n x² (x-1) {[ (x-1) (x-2) * \\ { XL-{h+1) +2) (x −(n+1)+1) (2.14) を満たす。実際,zn+1=cℓ.(x-n) であるから、この式の両辺をライ プニッツの公式 *4 を利用して回微分すると, 積の微妙で、()は2階 (xn+¹)(i) = (x²)(i). (x − n) + j(x²)(i-1)³025 (2.15) を得る。2.13) から (215) の左辺の定数項は, j! 7jn+1 であり, (2.15) の右辺の定数項は-nj! nijn+j.(j-1)! nj-1 である。 したがって、 う! で割って比較することで, (2.14) が導かれる。 また,後者については, 第2章 差分法 | 37 n xn-¹ +...+ñ₁, x² = Σnk,n x² k=0 x. ?jn+の区間の生き残り処理する? (2.16) と表せる。 ここで, in,n=1,70,n=0, さらに ik,n=0,knであ り kn は漸化式 *3 James Stirling, 1692-1770, スコットランド, スターリングによって書かれた ものに [163] などがある。 *4 1.4.2の定理 1.4を参照のこと。 > (x^²+1) = x^² + Mn₁n₁₁ X²

回答募集中 回答数: 0