学年

教科

質問の種類

物理 大学生・専門学校生・社会人

107番についてです (2)まで正解です (3)以降で自分が書いてることのうち何を間違えているのか指摘してほしいです 習っている先生が合成容量を使わない方針なので、その方針で指摘していただけると助かります

72 た。極板間の電場,電位差,静電エネルギーはそれぞれ何倍になるか。 (センター試験 + 福岡大) XX (4)(3)に続いて、極板と同形で厚さd.比誘電率2の誘電体を極板間に 入れた。 極板間の電位差 V, を Vo で表せ。X 3/16 100 間隔 だけ離れた極板 A,Bからなる電気容 4305/1 量Cの平行板コンデンサー, 起電力 V の電池と スイッチSからなる図1のような回路がある。 まず, スイッチSを閉じた。 A V B 図1 ○○(1) コンデンサーに蓄えられた電気量はいくらか。 (2) このときの極板Aから極板Bまでの電位の 次に,スイッチSは閉じたまま、厚さの金 属板Pを図2のように極板 A, B に平行に極板 間の中央に挿入した。 A V P B 図2 変化の様子を極板Aからの距離を横軸としてグラフに描け。 (3)また,このとき極板Aに蓄えられた電気量はいくらか。 (4)さらに,スイッチSを開いた後,金属板Pを取り去った。このと きの極板間の電位差 V' ばいくらか。 メト (5) Pを取り去るときに外力のした仕事 Wはいくらか。 6/19 X(3) C, にかかる電圧はいくらか。 _X (4) C2 に蓄えられる電気量はいくらか。 × (5) 抵抗Rで発生したジュール熱はいくらか。 108 起電力が V で内部抵抗の無視できる電池 E, 電気容量がCの平行板コンデンサーC, 抵抗値Rの抵抗R, およびスイッチSを接続 した回路がある。 G点は接地されており,そ の電位は0である。 はじめSは開いており, コンデンサーに電荷は蓄えられていない。 E 電磁気 73 (京都産大) R (a) まずSを閉じ, Cを充電する。 Sを閉じた瞬間に抵抗Rを流れる 電流は(1)である。 (b)Sを閉じてから十分に時間がたったとき,Cに蓄えられている静電 エネルギーは (2) である。またこの充電の過程で電池がした仕事 は(3)であり、抵抗Rで発生したジュール熱は(4)である。 (c)次に(b)の状態からSを開いた。最初Cの極板間隔はdであったが、 極板を平行に保ったままゆっくりと2dに広げた。このときA点の である。 また極板を広げるのに必要な仕事は(6) とされる。 電位は (5) であり,極板間に働く静電気力の大きさ(一定と考えてよい)は (7) (近畿大 + 防衛大) (愛知工大 + 静岡大) R S2 109 極板 A,Bからなるコンデンサーがあり [電荷 Q [C] が充電されている。 極板は一辺の長 さが〔m〕の正方形で,極板間隔はd[m] であ ある。 極板間は真空で, 電場 (電界) は一様とし、 真空の誘電率を co〔F/m〕 とする。 [+] [Q] -Q 図 1 +Q A 107 図はコンデンサー Ci, C2, C3 (電気 容量はそれぞれ C, 2C,3C) 電池 (起 電力V) およびスイッチ S. S2と抵抗R からなる回路である。 最初, スイッチは どちらも開いており、いずれのコンデン サーにも電荷はない。 I. まず, スイッチを閉じ, C, と C2 とを充電した。 _ (1) C, に蓄えられる電気量はいくらか。 (2) C2 にかかる電圧はいくらか。 Ⅱ.次にS」を開いてから,S2を閉じ、十分に時間がたった。 A,B間に, 図2のように誘電体を挿入する。 誘電体は一辺1 [m] の正方形で,厚さd[m] 比誘電率 e, である。 誘電体をx [m]だけ挿入し たとき, 誘電体部分の電気容量は (1) (F) であり,真空部分の電気容量は (2) [F]だ から,全体での電気容量は(3) [F] となる。 x -Q 図2 2.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

大学古典力学の2質点系の問題です。 この問題の(II)で重心Gに対する相対位置ベクトルとして、解答下線部のようにおいていますが、何故こうなるのですか?分かる方がいましたら教えて下さい。

演習問題 96 2質点系の運動 (I) 右図のように xyz 座標をとる。 長さ 3r の質量の無視できる棒の両端に,それ ぞれ質量 2mmの質点を取り付けたも のが、その重心Gのまわりを一定の角 速度で回転している。 重力はy軸の負voy = の向きに働くものとし、この2質点系の y4 2m cart ro Wo m Vo. vosino- Pox VoCose ス 重心Gを, 原点から、時刻 t = 0 のときに 仰角6 (0<</2)初速度 Do = [Vox, Voy, 0]. (vo=||vo||) で投げ上げるものとする。 このとき、この回転しながら運動する 2質点系について、時刻におけ る (i) 全運動量P, (ii) 全運動エネルギーK, () 全角運動量Lを 求めよ。 また, (iv) この2質点系の位置エネルギーを求め、力学的 ネルギーが保存されることを示せ。 ただし, 2質点系の回転はxy 平面 内で起こるものとし、 空気抵抗は無視する。 ヒント! (i) 全運動量P=PG, (ii) 全運動エネルギーK=KG+K', (i) 全角運動量L=Lc+L' の公式通りに求める。 (iv) 位置エネルギーの基 準を zx平面にとる。 解答&解説 P=Pc=3mUG (ii) 2質 K = (KG ここ KG= 質量 重心 K質重Gがで対 G が, で 対 Vol (速 V01 G Toz こ Vo さ V02 -v=jo =[var-gt+v 以 G (3m) (i) 2質点系の全運動量Pは,全質量 3m が集中したと考えたときの重心Gの運動 量 Pc に等しい。 重心Gには,重力に よる加速度g = [0,-g, 0] が生じるので, その速度UGx成分は, Per PacOS (一定成分は, Voy = - gt+ vosino となる。 t = 0 のとき Poy= Posin より ∴Uc=rc=[vocose, -gt + vasin0, 0] ……① より, P=Pc=3mUc=3m [vocoso, gt + vesin 0, 0] となる。 K 162

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

この問題の30〜36を教えてください。 2枚目はv(t)とx(t)の答えです

II page-3 以下の文章の空欄に当てはまる数値または選択肢をマークせよ。 なお、番号には 「① +, ② ③ 値が0なのでどちらでもない」 のいずれかを選択して解答すること。 単位が明記されていない物 理量はすべてSI単位の適切な基本単位もしくは基本単位の組み合わせによる組立単位を伴っている ものとする。 軸上を運動する質量3kgの物体に, 速度でに依存する抵抗力F-6(vv) が作用している。 時 刻t=0において,この物体は0の位置にいて 204m/sの速さでz軸の正方向に運動していたと する。この物体の運動方程式として適切なものを以下の選択肢からすべて選ぶと 21 となる。 (選択肢) dax dv d²v ①3- = -6(V) ②3- = dt -6(√)335 = dt dt2 =-6(VD) ④3- =vo - 6(√)³ dv dt ⑤ 3 =vo-6(vv) ⑥ z=-vot- (vo)342 ⑦ dt この運動方程式は, 変数分離を用いると, dv 03/2 = 22 23 1 I= =vot- (viit2 dt. と変形でき, 両辺の積分を実行して、 初期条件を用いることで, 24 v(t) = 26 (1+25t) と求まる。 また, 時刻における物体の位置z (t)は, 27t x(t) = う 1 + 28t となる。これらの結果から,この物体は無限に時間が経過したときに= 29 の位置で止まること が分かる。 物体がx=0からある点=Xまで動く間に抵抗力Fがする仕事Wは, 抵抗力Fを物体の動き方に あわせてで積分することによって求まるから, W = = √³ Fo X Fdx, を計算すればよいが,この計算を実際に実行するためには, 積分変数を位置から時刻tに変換して 時刻t=0から物体が=Xに到達したときの時刻t=Tまでの間にFがする仕事を求める式に変形 するのが便利である。 dr = v (t) dtに注意しつつ, 置換積分を利用してこの計算を行うことで,Wを 3132 求めることができる。 例えば, t=0からt=1/2までの間にFがする仕事は [30] - である。 33 方, 物体がt=0から29で止まるまでにFがする仕事は, T∞の場合のWを考えればよく, その結果は W=343536となる。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

どうやるのかよく分かりません

18:39:08 * 19% ⑥ プレビュー moodle.s.kyushu-u.ac.jp/log C = 考えよう。 自動車A,Bの運動方程式をかけ。 HS ii) 今度は解いてみよう。 各々の速度を運動方程式を時間で1回 積分することで求めよう。 iii) では相対速度は? (4)テストで10点の人が2人、 15点の人が5人、 20点の人が3人のと き、平均値は、点数と人数をかけたものを総人数で割り算する(あた りまえ)。 重心は 「密度」 の平均位置と考えることができるので、 例 えば長さαで重さがMの棒状の物質を原点からx軸に沿って配置し、æ における密度をp(r) とすれば、 先述の点数に該当するのがェで人数に 該当するのがp(z)、 総人数がMとなるので、 平均位置・・・つまり重 心は11S æp(x)dx で計算することができる。このことを念頭に90度 に折れ曲がった以下のような重さMで均一な密度の棒の重心を何の公 式も用いず、 積分によって求めよ。 4/14追記 持ってきた問題がよく なかったです。これだと2重積分ではなく、x軸に沿った棒とy軸に沿 った棒の二つに分け、 各々の重心を各々平均位置で求める方法が適切 ですね。 というわけで、 二重積分ではない方法で解いてください。 y M 2 IIII 4 T 78

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

この物理の問題を教えてください

問題3 (光の干渉) T 図2のように、 絶対屈折率がn=1の2枚の平面ガラス (媒質1) の間に厚さdの薄い板を挟み、 その間にできるくさび形の層に絶対屈折率n2=1の媒質2を入れる。このとき図の点Oから距離 だけ離れた点Dの上方にある点Aから光 (単色光) を当てて上から覗き見ると、 図のOQ 間に 「光 が強め合った明線」 と 「光が弱めあった暗線」 の縞模様が現れる。 以下では簡単のために点Aから 出る光は直進するものとし、A→C→Aという経路の反射光1とA→D→Aという経路の反射光2に よる干渉だけを考える。 図のQの長さをL=100dとし、 真空中の光の波長を入 として、以下の 空欄を埋めよ。 また選択肢がある場合には選択肢の番号を書け。 (i) 媒質1における光の波長は、媒質2における光の波長の (13)倍である。 (ii) 反射光1と反射光2の光学距離の差 (14) 倍であり、 また点Aから入射した光が反射 の するときに位相がずれるのは {(15) 1.点C, 2.点D} である。 (iii) 図のOQ間に見える隣り合う明線の間隔は入。 の (16) 倍である。また=375入) の位置に できるのは {(17) 1. 明線 2. 暗線, 3. 明線でも暗線でもない線} である。 A 媒質1 X 媒質2 L Bi 光 D P 媒質 1 Figure 2: くさび形の層による光の干渉。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

⑤にてエネルギー保存を示したいのですが、kl(x2-x1)とkx1x2という見慣れない項が出てきてしまいました。これらは何を表すのでしょうか。

(2) ぴっ T M 3=9/² か Imm X=0 10 22 3.1 おもりで ①おもりに対する運動方程式は m x₁ (t) = f ( x₂(+)-(α₁ (+)- l )... (i) ②おもり2に対する運動方程式は oe im m₂ (t) = = k ( X₂ (t)- X₁ (t)) -- (ii) fe X, (+) + 2₂ (²)) = ○分数の ③ cin+cil)を計算するとm(グ(ホ)+税え(たる) 両辺を積分すると m(xi(セ)+((+))=C,(c)・積分定数) 初期条件より C1=mぴなのでmxi(t)+mai(t)=mvo... (iii) よって運動量保存則が導けた。また全運動量Pの値はP=mvoと表せる。 ⑤ (1)xx1+ (ii) ×ュを計算すると m (?: (+) + Int 0₂ (C)棟分定数) ④ ciiUをtで積分するとmixi(t)+(mフェ) (+) ((m) Vott Cz (C2:積分定数) 幸せる。 PA 11 C₂ = 0 +507" m X₁ (t) + m X ₂ (t) = m Vo t すなわち x=1/2(xii(t)+22(t)) = vot と求められる。 2 12(0)²-1(ft t m x₁ x ₁ + m²₂ 21₂ = k ( x, x₂ - x₁ x₁ - x₁) - k (X₂ X₂ - 21₂ 2²₁) - x₂) 友(プ,フューズ、グレーlx)(xマューグロスコ) gift (iit) {-(メレオナズップ2)+ℓ(ゴューズ)+(x,x2+スチュ)}(乃(土) 両辺で積分すると下式のようになる。ただしC3は積分定数とする 無条件より積分定数にD 1/2/mx²+1/2/m252²={-(1/²+1/22^²)+ℓ(チュース)+x,x2}+C3 ・2 2 (TED² = mx²₁ ²2+ = mx ₂ + 1 X ² = = RX₂² - kl (X₂-X₁) - 12 X₁ X₂ = C3.

解決済み 回答数: 1
1/5