学年

教科

質問の種類

物理 大学生・専門学校生・社会人

5-c, 6-bを教えていただきたいです

5) 図 4.2 に示すように抵抗値 R の抵抗と容量Cのコンデンサが接続された回路がある. 入力を電圧e(t), 出力をコンデンサ両端の電圧vc (t) とする. 問5)においては, t=0 で 回路は静止状態にあるものとする. 静止状態とは,すべての素子に流れる電流,及び 素子両端間の電位差が0である状態をいう. a)この回路の入出力間の伝達関数H(s) = Vc(s)/E (s)を求めよ. ここで, Vc(s), E(s)は, それぞれ, vc(t) とe(t) のラプラス変換である. b)この回路に入力として, 高さ のステップ電圧e (t) = vou(t) を与えた時の出力vc(t) を求め,さらに図示せよ。 ただし, v > 0 とする. c) この回路に入力として, パルス幅Tで高さv のパルス電圧を与えた時の出力v(t)を 求め,さらに図示せよ。このとき, 入力e(t) は,式 (4.2) で定義したパルス波p (t) を 用いて, e(t) = vop (t) と表すことができる. し 単位ステップ関数をuct)として Pit) = u(t) - ult-Ti) e(t) R C vc(t) 図 4.2 RC 回路 6) 図 4.2の回路の入力として, パルス幅T」で高さ v のパルス電圧を周期Tで繰り返し与 える.ただし,T> T1 とする. 十分に遠い過去から入力が与えられ, t≧0では回路が 定常状態に達しているとする.定常状態では, vc(t) = vc(t + T)となっている.この とき,0≤t<Tの1周期の出力を求めたい. a) 図 4.2の回路で, vc (0) 0の場合の, E(s)とVc(s) の間に成り立つ関係式を求めよ.こ こで, Vc(s), E(s) は, それぞれ, vc (t) とe(t) のラプラス変換である. b)上記 a)で求めた関係式を用いて,入力e(t)としてvop(t)を与えた時の出力v(t)を求 めよ.ただし, vc (0) は未知数として残したままで解くこと. e) 上記 b)で求めた式で, vc(0) = vc(T)の関係を用いてvc(0)を求めよ.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

マーカーのn²-1はどのようにわかりますか?

とと,エルミート性のかわりに, 対称性 (A, B)p = (B, A)F が成り立つことです。 実ベクトル空間の内積が複素ベクトル空間の内積と違う点は,実数値をとるこ が直接わかるわけではありません. ここでは量子トモグラフィー, つまり量子状 そのためには, いくつかの種類の測定をしなければなりません. どのような測 多数回測定によってわかるのは, あるオブザーパブルの平均値だけなので, 状態 状 態を決定することを考えます。 定を行えば量子状態を決定できるでしょうか。 ■ 4.1 密度作用素の空間 n次元複素ユークリッド·ベクトル空間H上の密度作用素全体のなす集合Dens の構造をもう少し考えてみます. 密度作用素はエルミート作用素なので, エルミー ト作用素全体のなす集合 Herm に目を向けてみましょう. Herm は実ベクトル空間です. 次元はn次のエルミート行列のパラメータの数を 数えればよくて,対角線にn個の実パラメータ,それ以外のところにn(n-1)/2個 の複素パラメータがあるので, n° 次元になります.さらに、実ベクトル空間 Herm に内積を定義しておきます。 (定義)エルミート作用素の内積 A, B をエルミート作用素とするとき, 内積( , )= : Herm × Herm → Kで (A, B)F = Tr(AB) と定義する。 また,第1スロット, 第2スロットの両方に関して実線形です。 ミ

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

力学・基準振動についての問題です。 (4)以降が分かりません。 (4)のように異なる固有角振動数の問題ではどのようにして基準振動を考えればよいのでしょうか? (5)以降は同期現象だと思うのですが、どのように解けばよいのでしょうか?ちなみに(5)はΔω=2Ksin(Δφ*)と... 続きを読む

以下の問I、IIに答えよ。 また、結果だけでなく、導出過程も簡単に記すこと。 I長さの異なる紐をもつ二つの振り子の問題を考える。図1の ように』軸の正の方向を鉛直下向きとし、振り子の支点は2軸 上にあるとする。それぞれの振り子につけられている質量m のおもりは鉛直下向きに重力を受け、2軸に垂直な面内を運動 する。紐の長さはそれぞれい,であり、4>&とする。おも りの大きさや紐の質量は無視でき、運動の際に組はたるまな いとする。重力加速度をgとして、以下の問いに答えよ。 まず、支点でのまさつの効果を無視し、二つの振り子が独立に運動する場合を考える。紐の長 さがん,&の振り子の振れ角を、図1のように支点を通る鉛直下向きの軸となす角度として、そ れぞれ1,2とする。 図1 (1) 紐の長さが1の振り子のz軸まわりの角運動量 L。を求めよ。 (2) z軸まわりの角運動量 L,の時間微分の満たす方程式を示せ。 (3) が十分小さい微小振動のときの固有角振動数 w」を求めよ。 次に、二つの振り子の角度間に線形の相互作用がある系を考えよう。すなわち、Jを定数とし て、角度6,2 の運動方程式が d? =-w +J(B2 - h), d2 2= -5 + J(G,- Ba), と表せるとする。ここでwとwaは相互作用がないときの振り子の固有角振動数である。 (4) (t = 0) > 0, 0z(t = 0) = 0から静かに運動を始めるとき、その後の運動を基準振動の考 え方を用いて定性的に説明せよ。 dA dp 0, dt 振り子の角度0を振幅 Aと位相ゅを用いて0= Acos ¢ と表すと、単振動は、 と表される。ニつの振り子間に非線形相互作用があるとき、二つの振り子の位相1と2の時 間発展は上記のwiとw2を用いて次のように表せるとする: =W dt d の1=wi+ K sin(¢2- ), d 2= w2+ K sin(¢- p2). dt dt ここでKは定数とする。二つの位相の差 △¢ = 2- のが時間依存せずに一定の値をとること を「位相が同期する」という。 (5)位相が同期するときの位相差△がと固有角振動数の差 Aw = w2-wiの関係を求めよ。 (6) 位相が同期するときの振り子の角振動数”を求めよ。 (7) 位相差 AゅがAがから微小にずれても、十分時間が経った極限で位相が同期する条件を導 き、その条件をKとAwを軸とする平面上の領域として図示せよ。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

量子力学、有限井戸型ポテンシャルの問題です。 (5)がわかりません。V_*=π^2hbar^2/8ma^2と求めました。

以下の問I、II に答えよ。ただし、プランク定数を 2mで割った定数をんとする。 I.1次元のポテンシャル中の質量mの粒子を量子カ学的に取り扱う。粒子の座標をとし、ポテ ンシャルをV(z)とする。aと %を正の定数として、図1のように| >«の領域でV(z)= % で|<』の領域でV(z) = 0のとき、V%の値を小さくしていったところ、V%<V,のときに東 縛状態が一つだけになった。 (1) 図2のようにV% が無限大のとき、すなわち ||>aの領域でV(z) が無限大で || Saの領 域でV(a) = 0のとき、基底状態のエネルギーおよび第1励起状態のエネルギーを求めよ。 (2) 図1のポテンシャルでV%> V,のとき、基底状態の波動関数および第1励起状態の波動関 数の概形を描け。 (3) 図1のポテンシャルでV%> V。のときを考え、基底状態のエネルギーと第1励起状態のエ ネルギーをそれぞれ Eo, E, とする。このポテンシャルを、図3のように、a<0の領域で はV(z) が無限大となるように変更する。変更後の系の基底状態のエネルギー Eを Eと EEのうちの必要なものを用いて表せ。 (4) V,を求めよ。 (5) 図4のように、|2| < 3a の領域および ||> 5a の領域でV(z) = V./2で3a< ||| < 5aの領 域でV(z) = 0のとき、束縛状態の数を答えよ。厳密に導出する必要はないが、根拠を簡 潔に記すこと。またすべての束縛状態の波動関数の概形をエネルギーが小さい順に描け。 V(2) V(2) V% * E ーa 0 a ーa 0 a 図1 図2 V(2) V(x) Vo Iv./2 0 a ー5a -3a 0 3a 5a 図3 図4

解決済み 回答数: 1
1/2