学年

教科

質問の種類

物理 大学生・専門学校生・社会人

式(8.10)の1行目から2行目への変形の仕方がわかりません どなたか教えてください🙇‍♂️

8 でべた定人電流においては 任意の人 りから 電荷の量は 0 であり, したがって 信域 内の電荷 する正味の このときには 9e(*, 9!三0 であり, (8.のは Py 8.8) たる、これが第2章(1.8) の定常電流の保存則である. つまり, それは一般の電荷保存則(⑧. 2の特別な場合になっている。. いま、位置 0 にある点電荷6が速度 ②⑦ で運動しているとき を考えよう、 その電荷密度と電流密度とは, それぞれ(2.8) と ⑫.12)から x, の ー e6?(xーz(⑦の), KCY,の 三 のの9(xー2⑦) (8.9 で表わされる. これらは(8.7)の電荷保存則をみたしているであ ろうか. これを調べるために, (8.9) を(8.7) の左辺に代入して, 次のように計算する. すなわち 田 量は変化しな 9の ay ioの=c計ezの)+edivho(のが(ezの] = egrad。 0(xーz(⑦)・ (の・grad。 6*(xータ(⑦) = 一e grad。 の(*ー2(の)・9⑦のee②⑰・grad。@(xータ⑦) io (8.10) となり, たしかに電荷保在則がみたされている. ここで grad。 お 0 zは, それぞれ * およびヶに関する微分をとることを意 の2番目の等号は, 第1章(2.1)9にあるように, のアルタ関数の積であることに注意し, またそ ル量に関しては, その成分に分解すれば容易に 2 また3番目の等号では, 一般 に 97ァーの)/2ヵ= が成立することを利用した.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

なぜ、黄色で囲ったところのような式が出るのか教えてください!

昌 回渡の波融 ュ導位 これまでは, 一直線上を伝わる ( 波に (eeで(は 波について学んた に 面上を伝わる波について考えよ 6 回19 小波画 水面上の 1 点を振動させると, 当 波源を中心に円形の波紋が広がる( る(軌19紀でのとき, 同じ では振動の状態, すなわち位相が等しい。 これらの位相が等し ねた面を 波面 といい. 波が平面になる波を 平面江。 wave front 2 なる波を 球面没 という。波面は波の進む向きと常に垂直であ< spherical wave 水面上の 2 点を振動させると, これらの点を波源とする波が広が る(図 20)。このとき, 山と山(谷 と谷) が重なりあう場所は振幅が 大きくなる。また, 山と谷が重な りあう場所は, 振動を弱めあう。 四20 水画洲の証渉 ---は螺めあう を結んだ線の一部を示した。 このように, 波が重なって振動を 強めあったりめあったりする現象を 波の干渉 という。 図21 をもとにして, 強めあう場所と, 時めあう場所の条件を式で表 そう。 振幅 4 で同位相(一方が山のとき他方も山。 一孝が谷のきき他方も倒) で振動する 2 つの流源Su。 S。 から出る波の波長をえとずる波源S, S。 (MM ぁ とすると, 距離の差は | と家す 渉の条件は次のようになる。 強めあう点 : |』ー叫4=2mX今 選めあう点 : |』ー引 =+計4=(2w+1) x誠 0 AS 5 若 で さ破線 | ) は, 波源 Q。 5。 を点とする双曲線となる。 また, 法旨 * 出 っ>

解決済み 回答数: 1