物理
大学生・専門学校生・社会人
解決済み

式(8.10)の1行目から2行目への変形の仕方がわかりません
どなたか教えてください🙇‍♂️

8 でべた定人電流においては 任意の人 りから 電荷の量は 0 であり, したがって 信域 内の電荷 する正味の このときには 9e(*, 9!三0 であり, (8.のは Py 8.8) たる、これが第2章(1.8) の定常電流の保存則である. つまり, それは一般の電荷保存則(⑧. 2の特別な場合になっている。. いま、位置 0 にある点電荷6が速度 ②⑦ で運動しているとき を考えよう、 その電荷密度と電流密度とは, それぞれ(2.8) と ⑫.12)から x, の ー e6?(xーz(⑦の), KCY,の 三 のの9(xー2⑦) (8.9 で表わされる. これらは(8.7)の電荷保存則をみたしているであ ろうか. これを調べるために, (8.9) を(8.7) の左辺に代入して, 次のように計算する. すなわち 田 量は変化しな 9の ay ioの=c計ezの)+edivho(のが(ezの] = egrad。 0(xーz(⑦)・ (の・grad。 6*(xータ(⑦) = 一e grad。 の(*ー2(の)・9⑦のee②⑰・grad。@(xータ⑦) io (8.10) となり, たしかに電荷保在則がみたされている. ここで grad。 お 0 zは, それぞれ * およびヶに関する微分をとることを意 の2番目の等号は, 第1章(2.1)9にあるように, のアルタ関数の積であることに注意し, またそ ル量に関しては, その成分に分解すれば容易に 2 また3番目の等号では, 一般 に 97ァーの)/2ヵ= が成立することを利用した.

回答

✨ ベストアンサー ✨

ベクトルy(t)を置いて説明した。分かりづらければベクトルy(t)の3成分を別の文字で置いてもよい。一行飛んだがこちらの方が自然な変形だと思う。

Crystal Clear

続き
公式(と言ってもすぐ示せる)を使う

この回答にコメントする
疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉