学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この問題の30〜36を教えてください。 2枚目はv(t)とx(t)の答えです

II page-3 以下の文章の空欄に当てはまる数値または選択肢をマークせよ。 なお、番号には 「① +, ② ③ 値が0なのでどちらでもない」 のいずれかを選択して解答すること。 単位が明記されていない物 理量はすべてSI単位の適切な基本単位もしくは基本単位の組み合わせによる組立単位を伴っている ものとする。 軸上を運動する質量3kgの物体に, 速度でに依存する抵抗力F-6(vv) が作用している。 時 刻t=0において,この物体は0の位置にいて 204m/sの速さでz軸の正方向に運動していたと する。この物体の運動方程式として適切なものを以下の選択肢からすべて選ぶと 21 となる。 (選択肢) dax dv d²v ①3- = -6(V) ②3- = dt -6(√)335 = dt dt2 =-6(VD) ④3- =vo - 6(√)³ dv dt ⑤ 3 =vo-6(vv) ⑥ z=-vot- (vo)342 ⑦ dt この運動方程式は, 変数分離を用いると, dv 03/2 = 22 23 1 I= =vot- (viit2 dt. と変形でき, 両辺の積分を実行して、 初期条件を用いることで, 24 v(t) = 26 (1+25t) と求まる。 また, 時刻における物体の位置z (t)は, 27t x(t) = う 1 + 28t となる。これらの結果から,この物体は無限に時間が経過したときに= 29 の位置で止まること が分かる。 物体がx=0からある点=Xまで動く間に抵抗力Fがする仕事Wは, 抵抗力Fを物体の動き方に あわせてで積分することによって求まるから, W = = √³ Fo X Fdx, を計算すればよいが,この計算を実際に実行するためには, 積分変数を位置から時刻tに変換して 時刻t=0から物体が=Xに到達したときの時刻t=Tまでの間にFがする仕事を求める式に変形 するのが便利である。 dr = v (t) dtに注意しつつ, 置換積分を利用してこの計算を行うことで,Wを 3132 求めることができる。 例えば, t=0からt=1/2までの間にFがする仕事は [30] - である。 33 方, 物体がt=0から29で止まるまでにFがする仕事は, T∞の場合のWを考えればよく, その結果は W=343536となる。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

⑤にてエネルギー保存を示したいのですが、kl(x2-x1)とkx1x2という見慣れない項が出てきてしまいました。これらは何を表すのでしょうか。

(2) ぴっ T M 3=9/² か Imm X=0 10 22 3.1 おもりで ①おもりに対する運動方程式は m x₁ (t) = f ( x₂(+)-(α₁ (+)- l )... (i) ②おもり2に対する運動方程式は oe im m₂ (t) = = k ( X₂ (t)- X₁ (t)) -- (ii) fe X, (+) + 2₂ (²)) = ○分数の ③ cin+cil)を計算するとm(グ(ホ)+税え(たる) 両辺を積分すると m(xi(セ)+((+))=C,(c)・積分定数) 初期条件より C1=mぴなのでmxi(t)+mai(t)=mvo... (iii) よって運動量保存則が導けた。また全運動量Pの値はP=mvoと表せる。 ⑤ (1)xx1+ (ii) ×ュを計算すると m (?: (+) + Int 0₂ (C)棟分定数) ④ ciiUをtで積分するとmixi(t)+(mフェ) (+) ((m) Vott Cz (C2:積分定数) 幸せる。 PA 11 C₂ = 0 +507" m X₁ (t) + m X ₂ (t) = m Vo t すなわち x=1/2(xii(t)+22(t)) = vot と求められる。 2 12(0)²-1(ft t m x₁ x ₁ + m²₂ 21₂ = k ( x, x₂ - x₁ x₁ - x₁) - k (X₂ X₂ - 21₂ 2²₁) - x₂) 友(プ,フューズ、グレーlx)(xマューグロスコ) gift (iit) {-(メレオナズップ2)+ℓ(ゴューズ)+(x,x2+スチュ)}(乃(土) 両辺で積分すると下式のようになる。ただしC3は積分定数とする 無条件より積分定数にD 1/2/mx²+1/2/m252²={-(1/²+1/22^²)+ℓ(チュース)+x,x2}+C3 ・2 2 (TED² = mx²₁ ²2+ = mx ₂ + 1 X ² = = RX₂² - kl (X₂-X₁) - 12 X₁ X₂ = C3.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

ドブロイ波長についてなんですが 波長の整数倍nと量子数nが一致する理由ってありますか?

標準問題 子の速さを1,真空のクーロンの法則の比例定数を ko とすると, 軌道半径rはe, m, ko, v との間にはたらく静電気力を向心力として, 等速円運動をしていると考える。このときの電 を用いてア=ア] と表せる。 軌道の周の長さ 2πrは, 量子条件より, 正の整数(量子数) 20原 124 A) 必147.〈水素原子モデル〉 次の文中の「ア]から「カに適切な数式や数値を入れよ。 ボーアは水素原子の構造に関する次のようなモデルを提唱した。 n, プランク定数hおよびm, uを用いて, 2πr=_イ」と表せる。この式は,ド·プロイに よって物質波の考えが導入されて以降,「2πrが定常状態の電子の波長(ド· プロイ波長)の 整数倍である」と考えられるようになった。これらの関係から, 量子数nの定常状態の軌道 半径r,はe, m, ko, h, n, π を用いて, グカ=ウ」と表すことができる。n番目の定常状 態にある軌道上の電子の全エネルギー Enは, 電子の運動エネルギーと,静電気力による位 置エネルギー(無限遠を基準とする)の和より, e, m, ko, h, n, π を用いて, En=エ と表される。このように, ボーアは水素原子の中で定常状態にある電子は,とびとびのエネ ルギー準位をもつという仮説をたてた。 ボーアの水素原子モデルにおいて, 電子が n=1 の定常状態にあるときを基底状態, n>2 の定常状態にあるときを励起状態という。量子数nの励起状態にある電子は,きわめて短い 時間で量子数n'("'<n)の状態に移り,その差のエネルギーを光子として放出する。このと き,放出される光子の波長入は振動数条件から, 真空中の光の速さcおよび e, m, ko, h, n, n', π を用いて, ー%=Dオ]と表される。 水素原子の示す線スペクトルの観測結果から得られた輝線の波長入は,リュードベリ定数 Rを用いてー=Rー)の規則性をもつことが示されていた。 ボーアの水素原子モデ ルによるリュードベリ定数の計算結果は, すでに知られていたリュードベリ定数の値と高い 精度で一致し,水素原子のスペクトルを理論的に説明することに成功した。リュードベリ定 数 R=1.1×10'/m とすると, 水素原子の線スペクトルのうち, 可視光線領域 (3.8~7.8×10-7m)の輝線群の2番目に長い波長は, 有効数字2桁でカ 1 1 2 n Im と計算できる。 [20 九州工大 改]

解決済み 回答数: 1
1/8