学年

教科

質問の種類

物理 大学生・専門学校生・社会人

F^μγがマーカーで引いたところのようになるというのがよくわかりません どなたか教えてください🙇‍♂️

て<運動方程式 15.4 電場と磁場の統一: フ ー ゲグジージツアル 前項では3次元空間で定義されたマッ クスウェル応 へ拡張することで電磁場のエネルキ\ー . 運動量テン が ここでは電磁場の4元ポテンシャル(4) カテンソルを4炊元時補 レル/縛 を導入したのだ (@/c 4)T から直接的に を定式化する. これによって, 度力は電場と克場統一した4 次元時で しい形式に整理される. まず (4) の微分?2) によって誘導されるぅ 階の反対称 レウォンシクルレ ルーの4リー 4。 (1.91) を定義する. これを電磁場のテンソル (electromagnetic elq tensor) あるいは ファラデーテンツル (Faraday tensor) という. 電磁場の定義式 (1.38)-(1.39), すなわち玉ニ ー(Vの上の4), ーV x 4 を用いて成分を書き下すと 0 1/c >/c 5/c 六際の)半ー証2 ーpg5/c 3 0 。ぢ: ー85/@ 王の二流 0 (gp)ー (1.92) 逆に言うと, 3 次元ベクトル戸と万はファラデーテンソル 瓦, の六つの成分 を取り出して書いたものだと「定義] することができる. ファラデーテンツソルを反変成分で表現すると, ツーのパージイ =謙交Eg7 0 一品/c 一玉/c fs/c 章GE | no 太5/c 3 0 ームBュ 5/c -9> 0 】 (1.25)-(1.26) を用いて計算すると, に 隔の (1.94) 逆たに言う と。 (1.94) がマックスウェルの方程式の後半2 式 (1.25)-(1.26) に相当 する式だと考えることができる 0) 2.3 館で定義する外微分である

未解決 回答数: 1
物理 大学生・専門学校生・社会人

(1.82)から(1.83)の1行目への変形を教えてください

1.5 電磁力と運動方程式 と定義する・ これを応カテンソル (stress tensor) と呼ぶ31 発散の定義を拡張 う5 ゆで (V 7)* = > の77k 2 と書く. 以上を (1.80) に使うと ァー/ vs ト】 を得る. 領域 に働く力 はの密度 (単位体積あたりの力) の体積積分だ ょ考えアーリナdz と置くと (< は任意の領域であるから) SEM という表現を得る. さて電磁場の応力テンツルは 2 (@g -3 wlgf) 5 (ぁg 半2 1.82) タ /o 2 3 によって与えられる. これを成分とする応力テンソルを 7,。 と書きマックス ウェルの応カテンツルと呼ぶ 7. の発散を計算すると (マックスウェルの方 程式をた用いて) V.人6。 = eo [(V お玉ーー玉x(Vx妃] エー [(V.Bお)お-Bx(Vxぢ)] /0 三p/ぢ十eoぢ x (の万) 一戸 x (eoのみ刀二) ニーp/二7xアeoの(ぢxどぢ) (1.83) を得る. この第1 項と第 2 項は荷電粒子に作用するローレンツカ (1.71) を有限 な体積をもつ物体に一般化したもるのであることがわかる. 第3項は電磁場自体がもつ「運動量] が時間変化することを表している. つ まり (万 x ) は「電磁場の運動量密度」 を表すベクトルなのである. (1.36) で定義したポインティングベクトルを思い出そう. 5 = 娘xメおは電詳場 31 テン >ッ "リ テンソルアア の要素に上つきのインデックスを与えるのは』 これを物体の応カテンツルと 迷合するための都合である. まだテンソルの友変成分と半変成分の区別を十分説明して いないので, 後の議論のための技術的準備とだけ理解しておこう.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

考える力学という本の163ページ(9.27)の式変形がわかりません! この2ページにヒントがあると思うのですが... どなたかお願いします🤲

$9.2 ベクトルの回転 XXK。 ある軸のまわりに角速度 で回転している任意 の トル 4 の単位時間あた りの回転 4/d7 を の を用 いて表す式を求めよう. ペク トルは向きと大きさを与えれ ば決まるから, 回転の様子は。 4 の始点を電上にもって きて, 図9.4のように描くことができる. 時間A7 の間の 4の変化A4 は 図9.4から明らかなようだだ。のと4の 両方に垂直である. 0.3 條性系に対して回転している座標 以上で準備ができたので, 慣性系S に対し 回転しでいる座標系 S'(図9.5) から見た質 点の運動を考えよ う. ざ 系の原点 0' を回転較 上にとり, S系の原点O はどこにとってもょ いから, 0と一致するように選ぶ. 純粋に回 暫のみの場合を考え, S/系はS 系に対して角 速度@ で回転しでいるが, 並進運動はしてぃ 4A41」ゅ。 A414 (9.9) 8 JeO9時4のの > ないも5のとする. の の向きとS系やS*系の座 計 8 に (0 2 林間の向きは必ずしゃ一致している必要はない 9 ER 2 肉原還はとでに理由がない限り自由に選べるから, 図9.5ではぁと。坦 =4sim |6|Az ⑲) である. 4 は4のゅに垂直な成分を表す. したがって。ペベク トル積を用 れば, 向きも含めて 2軸を一致させて描いてある. ただし, 以下では, 座標軸の選び方によらず に成り立つ三股的な議論を行う座標系の相対的な並進運動はなく, かっ (8.4) において ro = 0 だから と表すことcs. 44々ox4A/ @ 2 9.13) ・ を 47 て除して4/ 0 の極限をとる と ある。 この場合には。 $ 8.3 で行ったようなベクトル記号のみによる議論は (OK 押力であるそこで, あらためて,「座標示による質点の運動の記述」 とは何 7 本 上2 @め であるかを考え もae 2 てみると, 系での運動の記六 0 @, 6 @ の運動は見えず(なぜならそれが座標の基準だから) 2 ゆりが<般のまわりに崩導訟ので回転している. < 半 "05 とその大き = 6c 6寺26 ⑲1め っー00のまめょ。 間 に 了9 も @.5) 尺の 員 ・g三ex 、 そ UE 了 の “バム=⑩0.のx,2.0) coo 語I20) K の記述 5 1 0, の運動は見えず (周) 8 DX 衣/二eeキリのる R as/5。 ORG3の(azの Ne 人 oe @.⑰ 質点の加速度・g ニ@y の とする記述 SS 誠林成分 の。 Gi Yoのがあらわに含まれる関係式 遇 人 r6x $9.3 條性系に対して回転している座標

解決済み 回答数: 1