学年

教科

質問の種類

物理 大学生・専門学校生・社会人

流体力学の最初の最初、ラグランジュ微分のところでつまづいて困っております。 二枚目の?をつけた計算過程はどのような微分なのでしょうか? よろしくお願いします。

の1 流れの運動学 8 1 = (u.V)u U のようにして得られた. 記号▽はナブラ (nabla) とよみ 0 鶏分(1.14) 0 マ= e』 + ey Oy 0z のように定義される演算子 (operator) であるす. ea, ey. Ez はそれぞれ』軸, 軸,2軸の正の向きに向かう単位ベクトル (unit vector) で, これらを基本ベク トル (fundamental unit vector)という。 式(1.12) の両辺を At でわって, At →0 の極限をとると,流体粒子の受け る加速度a(z,t) を求めることができ に Au a(x, t) = lim + (u-V) u(z, t) At→0 At Ot D -u(x,t) Dt となる.ただし D +u.V Ot Dt で,D/Dt をラグランジュ微分 (Lagrangian derivative),あるいは実質微 分(substantial derivative), あるいは物質微分 (material derivative) という。 Du/Dt= Ou/0t+ (u.V)uの右辺第1項は, 流体中のある点aをつぎつぎと 通過する流体粒子の速度の時間的変化の割合を表しており,局所加速度 (local acceleration) とよばれている. また第2項は,点cにある流体粒子がある瞬間 にその前後の流体粒子の速度差のために受ける速度の時間的変化割合で対流加 速度 (convective acceleration) とよばれている。 ラグランジュ微分 D/Dtは, オイラーの方法の意味で »とtの関数として表 された量,すなわち 「場の量」に対してのみ作用させることができる. なぜな ら,その定義式(1.16) の右辺は, 独立変数を αとtとするときの偏微分0/0tと ▽によって構成されているからである. aとtの任意関数 f(z,t) のラグラン ジュ微分は,式(1.15) を導いた過程から理解できるように, 流れに伴う f(x.t) の時間的変化の割合,すなわち, 流体粒子の軌跡に沿っての f(z,t) の時間的変 化の割合を表す。 十演算子▽をスカラー関数f(a)に作用させて得られるVfは, f の勾配 (gradient) とよばれ る。▽をスカラー関数に作用させたときは▽の代わりに grad という記号を使ってもよい。す なわち, ▽f=gradf. 後に述べるように, ▽をベクトルとみなしてベクトル関数に作用させ る(内積をとる)ときは, 記号 gradは使わない、ただし、式(1.13) の▽は grad を使って書 くことができる。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

(2.1.1)をどのように展開すれば(2.1.4)になるんでしょうか

2.1 ラグランジュ形式 解析力学の2つの形式,すなわちラグランジュ形式とハミルトン形式についてその 特徴を述べ,両者の関係を考察するのが本章の目的である). まず,ラグランジュ形式から始める. ラグランジュ形式は独立変数として一般座標 g'を用いて記述されるが, ラグランジュ関数Lはgとずで表される。そして, 外的 拘束条件のない場合は, ラグランジュの運動方程式は前節で述べたように d OL TO = 0,(i=1~ N) dt(0g Og' である。これは gi の時間に関する2回微分方程式であり, 一般には N個の独立な方 住式糸である.したがって, これらの方程式を解いて運動を求めるとき, 初期値 g' と 9の両方を指定して運動が一義的に決定される. すると, 力学系の状態を指定するの は9とであるといえるから, g'とがとを変数とする空間を考えると都合がよい。 このような2N 次元空間を状態空間、あるいはハミルトン形式の位相空間(phase *pace)と対応させて, 速度位相空間(velocity phase space)という。 そこで,速度位相空間の座標を(g',g) で表すことにする.は速度 に対応す る変数であるが, gi は一応q' とは別ものとして扱い, q' の時間微分であるfと区別 注*)本章以下,ラグランジュ関数 Lおよびハミルトン関数H は時間を陽に含まないとする.時間に 顕わに依存する場合も, OL/0tの付加項が付くだけで, 以下の考察は本質的に変わりはない。 15

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

考える力学という本の163ページ(9.27)の式変形がわかりません! この2ページにヒントがあると思うのですが... どなたかお願いします🤲

$9.2 ベクトルの回転 XXK。 ある軸のまわりに角速度 で回転している任意 の トル 4 の単位時間あた りの回転 4/d7 を の を用 いて表す式を求めよう. ペク トルは向きと大きさを与えれ ば決まるから, 回転の様子は。 4 の始点を電上にもって きて, 図9.4のように描くことができる. 時間A7 の間の 4の変化A4 は 図9.4から明らかなようだだ。のと4の 両方に垂直である. 0.3 條性系に対して回転している座標 以上で準備ができたので, 慣性系S に対し 回転しでいる座標系 S'(図9.5) から見た質 点の運動を考えよ う. ざ 系の原点 0' を回転較 上にとり, S系の原点O はどこにとってもょ いから, 0と一致するように選ぶ. 純粋に回 暫のみの場合を考え, S/系はS 系に対して角 速度@ で回転しでいるが, 並進運動はしてぃ 4A41」ゅ。 A414 (9.9) 8 JeO9時4のの > ないも5のとする. の の向きとS系やS*系の座 計 8 に (0 2 林間の向きは必ずしゃ一致している必要はない 9 ER 2 肉原還はとでに理由がない限り自由に選べるから, 図9.5ではぁと。坦 =4sim |6|Az ⑲) である. 4 は4のゅに垂直な成分を表す. したがって。ペベク トル積を用 れば, 向きも含めて 2軸を一致させて描いてある. ただし, 以下では, 座標軸の選び方によらず に成り立つ三股的な議論を行う座標系の相対的な並進運動はなく, かっ (8.4) において ro = 0 だから と表すことcs. 44々ox4A/ @ 2 9.13) ・ を 47 て除して4/ 0 の極限をとる と ある。 この場合には。 $ 8.3 で行ったようなベクトル記号のみによる議論は (OK 押力であるそこで, あらためて,「座標示による質点の運動の記述」 とは何 7 本 上2 @め であるかを考え もae 2 てみると, 系での運動の記六 0 @, 6 @ の運動は見えず(なぜならそれが座標の基準だから) 2 ゆりが<般のまわりに崩導訟ので回転している. < 半 "05 とその大き = 6c 6寺26 ⑲1め っー00のまめょ。 間 に 了9 も @.5) 尺の 員 ・g三ex 、 そ UE 了 の “バム=⑩0.のx,2.0) coo 語I20) K の記述 5 1 0, の運動は見えず (周) 8 DX 衣/二eeキリのる R as/5。 ORG3の(azの Ne 人 oe @.⑰ 質点の加速度・g ニ@y の とする記述 SS 誠林成分 の。 Gi Yoのがあらわに含まれる関係式 遇 人 r6x $9.3 條性系に対して回転している座標

解決済み 回答数: 1