学年

教科

質問の種類

物理 大学生・専門学校生・社会人

マーカー部分なのですがmx=-kx+mgではないのですか?

41 -例題 1 ばね振子 ばね定数kのばねについて次の問いに答えよ。 (1) ばねに質量 mの質点を静かにぶら下げた.つり合いの位置におけるばねの 伸び 41 を求めよ.ただし重力加速度をgとする。 (2) (1)の位置からさらに下向きにaだけ引っ張って静かに手を放した. その後 の運動を求めよ。 【解答) (1) ばねの復元力は -k4l であるから, 重力とのつり合いから, kAl= mg 41= mg k 171 (2) つり合いの位置からのばねの伸びを x とすると,質点に働く力は (ばねの復元力)+(重力) 3 ーk(41+x)+mng =-kx (: (1) よって運動方程式は kx mi=-kx =Vとおくと,これは単振動の運動方程式 (5.4)に一致する. よ m って,一般解は 2=Asin(ot +¢) であり,初期条件は t=0 でx=a, v=0 であるから (ただしA,¢は任意定数) A sin p=a Ao cos p=0 これより φ=/2, A=aとなり, 求める解は k x=a cos wt ただし の= m |k ある. これは, 振幅 a,角振動数 ω=, の単振動である。 m 自然長からずれた位置での振動も,つり合いの位置を原点にとれば, 松 【注意】 が楽になる. 本間の場合, 重力はつり合いの位置を決める役目しかしておらず, つ 合いの位置を原点に選べば重力は関係してこない.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

厚さがdと言われているので、写真の黒字の範囲で考えた場合答えは、0、(ρ/εo)z、(ρ/εo)×dになりますか?

2 微分形のガウスの法則を用いて電場を求める 次に,微分形のガウスの法則 P(r) V-E(r) = €o を用いて、平面電荷の作る電場を求めてみよう国,この場合,平面電荷を実は厚みdの板に一様な密度pで分 布している電荷だと考えることになる(図).この仮設は尤もらしい。なぜなら(厚みのない)2次元的な平面 電荷は実際には存在せず,見るものさしを細かくしていけば,いつかは厚みのある板状の一様電荷分布になる だろうからだ、原点を板の厚みの半分のところにとり図口のように座標軸を導入する。こにでも対称性から、 (0,0, di2) p (0,0, -d2) x 図7 電場はzにしか依存せず,z軸に平行な向きであることが分かる。よって(21) 式は次のようになる。 P €O (2.2) 0 ||> d/2 について,対称性から E.(-2) = -E(2) であることに留意すると, -E (2く-d/2) (2.3) E ただしEは定数、また|<d/2に対して E.(2) = 2:+ D (2.4) Dは定数である国z= ±d/2 で電場は連続であるという条件から、 E(d/2) = 2d (2.5) 2+D=E E(-d/2) = pd +D=-E (2.6) €o 2 :E- d 2co D=0. (2.7) ** ひとまずふ関数を用いないで電場を求め,後でもう一度ふ関数を用いて解くことにする。 *9対称性の要請である E(-2) = -E.(2) を満たすためには D=0であることは分かる。 4 2012-05-21ver1, 22ver2, 2013-03-09ver3 ZSO 03Zsd zad ガウスの法則について すなわち, pd 2€0 P. €O pd 2€o (-d/2<:くd/2) (2.8) (こ>d/2).

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

マーカーのn²-1はどのようにわかりますか?

とと,エルミート性のかわりに, 対称性 (A, B)p = (B, A)F が成り立つことです。 実ベクトル空間の内積が複素ベクトル空間の内積と違う点は,実数値をとるこ が直接わかるわけではありません. ここでは量子トモグラフィー, つまり量子状 そのためには, いくつかの種類の測定をしなければなりません. どのような測 多数回測定によってわかるのは, あるオブザーパブルの平均値だけなので, 状態 状 態を決定することを考えます。 定を行えば量子状態を決定できるでしょうか。 ■ 4.1 密度作用素の空間 n次元複素ユークリッド·ベクトル空間H上の密度作用素全体のなす集合Dens の構造をもう少し考えてみます. 密度作用素はエルミート作用素なので, エルミー ト作用素全体のなす集合 Herm に目を向けてみましょう. Herm は実ベクトル空間です. 次元はn次のエルミート行列のパラメータの数を 数えればよくて,対角線にn個の実パラメータ,それ以外のところにn(n-1)/2個 の複素パラメータがあるので, n° 次元になります.さらに、実ベクトル空間 Herm に内積を定義しておきます。 (定義)エルミート作用素の内積 A, B をエルミート作用素とするとき, 内積( , )= : Herm × Herm → Kで (A, B)F = Tr(AB) と定義する。 また,第1スロット, 第2スロットの両方に関して実線形です。 ミ

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

物性物理学の本を読んでいて、質問があります。 本では, 量子力学による1電子原子の電子状態の記述について 添付のように述べていて, (1.12)式までは良いのですが, 赤枠で囲ったところの式(1.13)の導出過程が知りたいです。 よろしくお願いいたします。

$1.2 1電子原子の電子状態 1 p° = 2me 2 a 1 V= 2m。 2m。(r+ r dr 原子においては,原子核を中心としてそのまわりの半径10-10m程度の領 の形となる。ここでAは次のような角度に関する微分演算子である。* 域を電子が運動している。原子の構造を理解するためには,この電子の振舞 1 sin 0 d0 1 を調べなくてはならない。まず最も単純な場合として,Ze の正電荷をもった A= - (sin 0 sin' 0 核のまわりを,1個の電子が運動している場合を考える。Z=1であればこ 1電子原子のハミルトニアンがこのように具体的に与えられた.このハミル れは水素原子そのものであり,Z =2であれば He* イオンということにな トニアンに対するシュレーディンガー方程式(1.9) は2階の微分方程式の形 る。 をしている。これを満たす解として波動関数T(r, 0, φ) が求まれば,1電 原子の質量のほとんどは核に集中しているので、そこを重心として座標の 子原子における電子の分布の様子がわかる。ところで,原子に属する電子の 原点にとってさしつかえなかろう。電子は -e の電荷をもち,核の正電荷 波動関数は,核から十分遠方(r→0)ではゼロに収束するはずである。こ Ze とクーロン相互作用をもつ。そのポテンシャルエネルギーは電子と核の のような境界条件の下で(1.9)式を考えると,電子のエネルギー固有値 E が 間の距離rに反比例し, 離散的な特定の値をとるときのみ解が存在する。これは量子力学系の顕著な Ze? V(r) = - 特徴である。 4TE0ア 最も低いエネルギー固有値を与える解は球対称で、次の形をしている。 である。* これは万有引力と同じ形をもつので,古典的に考えれば,地球が 17Z/2 ( exp(-) 太陽のまわりを回るように電子は核のまわりを楕円軌道を描いて回ると考え 『(r) = たくなる。しかしながら,このような極微の世界まで古典ニュートン力学が ただし,ここで そのまま成立するわけではない,電子の振舞を正しく理解することは,今世 4TEh An = mee? =0.529 A 紀初頭登場した量子力学をもってはじめて可能となった。量子力学によると, 電子の存在確率は波動関数 『(r)の絶対値の2乗に比例する。定常状態では 『(r)は次のシュレーディンガー方程式を満たすというのが量子力学の骨子 はボーア半径とよばれる。 である。 H V (r) = ET (r) ここで はハミルトニアンで,電子の運動エネルギーとポテンシャルエネ ルギーの和であり, 1 p°+ V(r) 2m。 H = の形をもつ。** 第2項のポテンシャル項は方向によらず,核からの距離のみ に依存するので,全体を極座標を用いて表した方が都合がよい。このとき, 第1項の運動エネルギーの部分は Eo = 8.8542 × 10-12 F/m は真空の誘電率。 m。は電子の質量,p= - iAVは運動量オペレータである。ただし,▽はナプラと読 み,直交座標系では 定,立,えを直交する単位ペクトルとして、V= -+ の形をもつ微分演算子である。カ = h= 6.626× 10-4JSはプランク定数。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

力学・基準振動についての問題です。 (4)以降が分かりません。 (4)のように異なる固有角振動数の問題ではどのようにして基準振動を考えればよいのでしょうか? (5)以降は同期現象だと思うのですが、どのように解けばよいのでしょうか?ちなみに(5)はΔω=2Ksin(Δφ*)と... 続きを読む

以下の問I、IIに答えよ。 また、結果だけでなく、導出過程も簡単に記すこと。 I長さの異なる紐をもつ二つの振り子の問題を考える。図1の ように』軸の正の方向を鉛直下向きとし、振り子の支点は2軸 上にあるとする。それぞれの振り子につけられている質量m のおもりは鉛直下向きに重力を受け、2軸に垂直な面内を運動 する。紐の長さはそれぞれい,であり、4>&とする。おも りの大きさや紐の質量は無視でき、運動の際に組はたるまな いとする。重力加速度をgとして、以下の問いに答えよ。 まず、支点でのまさつの効果を無視し、二つの振り子が独立に運動する場合を考える。紐の長 さがん,&の振り子の振れ角を、図1のように支点を通る鉛直下向きの軸となす角度として、そ れぞれ1,2とする。 図1 (1) 紐の長さが1の振り子のz軸まわりの角運動量 L。を求めよ。 (2) z軸まわりの角運動量 L,の時間微分の満たす方程式を示せ。 (3) が十分小さい微小振動のときの固有角振動数 w」を求めよ。 次に、二つの振り子の角度間に線形の相互作用がある系を考えよう。すなわち、Jを定数とし て、角度6,2 の運動方程式が d? =-w +J(B2 - h), d2 2= -5 + J(G,- Ba), と表せるとする。ここでwとwaは相互作用がないときの振り子の固有角振動数である。 (4) (t = 0) > 0, 0z(t = 0) = 0から静かに運動を始めるとき、その後の運動を基準振動の考 え方を用いて定性的に説明せよ。 dA dp 0, dt 振り子の角度0を振幅 Aと位相ゅを用いて0= Acos ¢ と表すと、単振動は、 と表される。ニつの振り子間に非線形相互作用があるとき、二つの振り子の位相1と2の時 間発展は上記のwiとw2を用いて次のように表せるとする: =W dt d の1=wi+ K sin(¢2- ), d 2= w2+ K sin(¢- p2). dt dt ここでKは定数とする。二つの位相の差 △¢ = 2- のが時間依存せずに一定の値をとること を「位相が同期する」という。 (5)位相が同期するときの位相差△がと固有角振動数の差 Aw = w2-wiの関係を求めよ。 (6) 位相が同期するときの振り子の角振動数”を求めよ。 (7) 位相差 AゅがAがから微小にずれても、十分時間が経った極限で位相が同期する条件を導 き、その条件をKとAwを軸とする平面上の領域として図示せよ。

解決済み 回答数: 1