学年

教科

質問の種類

数学 大学生・専門学校生・社会人

多様体を構成するために、位相空間に完全アトラスを導入するところで質問です。 完全アトラスを導入するメリットとして、この文章の下線部を「異なる座標系を用いたのに同じ計算ができてしまうという問題が解消される」解釈したのですが、そこがよくわかりません。座標系を変えて計算する... 続きを読む

1 Two n-dimensional coordinate systems & and ŋ in S overlap smoothly provided the functions on¯¹ and ŋo §¯¹ are both smooth. Explicitly, if : U → R" and ŋ: R", then ŋ 1 is defined on the open set ε (ur) → ° (UV) V and carries it to n(u)—while its inverse function § 4-1 runs in the opposite direction (see Figure 1). These functions are then required to be smooth in the usual Euclidean sense defined above. This condition is con- sidered to hold trivially if u and do not meet. Č (UV) R" Ĕ(U) n(UV) R" S n(v) Figure 1. 1. Definition. An atlas A of dimension n on a space S is a collection of n-dimensional coordinate systems in S such that (A1) each point of S is contained in the domain of some coordinate system in, and (A2) any two coordinate systems in ✅ overlap smoothly. An atlas on S makes it possible to do calculus consistently on all of S. But different atlases may produce the same calculus, a technical difficulty eliminated as follows. Call an atlas Con S complete if C contains each co- ordinate system in S that overlaps smoothly with every coordinate system in C. 2. Lemma. Each atlas ✅ on S is contained in a unique complete atlas. Proof. If has dimension n, let A' be the set of all n-dimensional coordinate systems in S that overlap smoothly with every one contained in A. (a) A' is an atlas (of the same dimension as ✅).

未解決 回答数: 0
数学 大学生・専門学校生・社会人

この問題が何にも分からないのですが、解いてくれる方いますか?お願いします。

問6| R°の領域D上で定義された正則曲面p:D→R®は E=G かつ F=0 を満たすとする.(このような(u, v) を等温座標系という.)ガウス枠ア= (pu, Pu, U)の微 分を用いて,行列値関数u, Vを F= FU, F。= FV と定める。ガウス曲率を K, 平均曲率をHとする.正方行列U, V に対し [U, V] を [U, V] = UV -VU とおく、以下の問いに答えよ。 (1) KとHをE, L, M, N を用いて表せ、(答えのみで良い。) (2) ガウス·ワインガルテンの公式はクリストッフェル記号T%(i,, k = 1,2) とワイン ガルテン行列A=i-'iiを用いて次のように表される: -T Pu+ T Pe+ Ly, Puu =Ta Pu+T Po+ Mv, Ta Pu+ T Po+ Nv, V=-A P- APor V,= -A Pu- A po. Puu = Puv = 「, , T, T, r, TをEを用いて表せ、また,A, A3, Ab, A3, を E, L, M, Nを用いて表せ、(答えのみで良い。) (3) U, Vを E, L, M, N を用いて表せ、(答えのみで良い。) (4) U, V]を計算すると次のように表される: E,(L- N) - 2E,M 0 -A 2E2 4, V = E,(L- N) + 2E,M 0 A 2E2 B C 0 A, B, C を E, L, M, N を用いて表せ、 (5) 可積分条件U。- V。= U, V), つまりガウス·コダッチ方程式は次のように表される: A(log E) = EX,, L,- M, = H X2, M,- Nu = H X3. このとき,X,, X2, X, をK, E を用いて表せ、 間7| nを整数とする。R? の領域 D上で定義された正則曲面p:D→R’に対して,その第一

解決済み 回答数: 1
1/2