学年

教科

質問の種類

数学 大学生・専門学校生・社会人

解答のところでシャーペンで①②と書いているところについてそれぞれ質問したいです。 ①a>2のaは何を表していますか? anのことですか?? a>2がan>2のことを示しているのならばa1>2ということは理解できますが、間違っていれば教えて欲しいです。 ②なぜan-an-... 続きを読む

3 単調数列とコーシー列 25 SO ★★ 基本 例題 020 数列の発散と収束する数列の有界性 α>2として,数列{a}を次のように定める。 (本 a=a2-2, an+1=an2-2 この数列は正の無限大に発散することを示せ。 指針 数列{an} が単調に増加することを示す。 解答 収束する数列{a} は有界である。 2より a2 数列{a} が正の無限大に発散することを示すために, bn= 1 束することを示す。 このことは,次の定理により示される。 定理 収束数列の有界性 として, 数列{6} が 0 に an PD (称号の向きは変asaz 262 以下, 帰納的にすべてのnに対して an>2 単調減少 an-an-1=(an-12-2)-an-i= (an-i+1) (an-1- -1-20 よって, 数列 {az} は単調に増加する。 ancian. (+(-2) 271-2) bn=- とおくと, 数列{6} は単調に減少する。 bn 1 an また,すべてのnに対してb>0であるから,数列{bm}は下に有界である。 よって, 数列{bn} は収束するから,その極限値をβとする。 an>2より bn<- 2 21 an=12-2より1_1 (正の内に発話していること。 b2-2であるから bn-12-bn-2bn bn-12 B2=β-233 より β(β+1)(2β-1)=0 [n] 06/1/23より β+1>0, 2β-1<0 よってβ=0 [s) これはliman=∞ であることを示している。 n→∞ 参考 定理 収束数列の有界性の証明 lima=α とする。 このとき、ある番号Nが存在して, n≧Nであるすべてのnに対して N11 |an-α| <1 となる。 三角不等式により|an|-|a|≦|an-αであるから,n≧N であるすべてのnに対して|an|<|a|+1 が成り立つ。 ここで, M=max{|a|+1, |a|,|az|,......., | av-1|} とする。 このとき,Nの場合も、n<N の場合も |an | ≦M が成り立つ。 よって, 数列{an} は有界である。 注意 この逆は正しくない。つまり数列{az}が有界であっても、収束するとは限らない。例えば、 =(-1)" で定義される数列{an} は-1≦a≦1から有界であるが,振動するから収束しない。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

大学の「微分積分」で出題された周波数の課題です。 (1)だけでもいいのでわかる方いらっしゃったら教えてください。

2 以下の説明を読み、 設問 (1) (6) 答えよ. 授業中に周波数を少しずらした二つの音を発生させて、唸りが聞こえるこ とを実演した.この現象を数学的に記述してみよう。 音とは、空気の振動が空気中を伝播して耳に届くことで認識される自然現 象である. tを時刻 (単位:秒) として、振動がy=sin (ct) (cは定数) の 形で表される波を正弦波と呼ぶ。 正弦波の周波数 (単位:Hz=1/秒) とは 「波が1秒間に何回振動する か」 を表す量である. 例えば sin (2t) は 「周波数1の正弦波」 であるが、 この音波は人間の耳には聞こえない。 人間の可聴域はだいたいf=20Hz 15,000Hz であると言われている。 (1) 周波数 f(Hz) の正弦波を時刻t (秒) の関数で表せ。 (ヒント: f は正の整数であると考え、 t=1のときに sin の中身が 「f回回転 「した角度」を表すように定数を定めれば良い) さて, 音波は重ね合わせの原理が成り立つ。 つまり、二つの地点から発せ られる音波がある地点Pでそれぞれ a(t), b(t) で表されるとき, それら を同時に発生させると P では a(t)+b(t) という音波となる. いま周波数 f=400Hzを中心として、そこから前後に1Hz ずらした二つ の周波数 f=399 Hz, fz = 401Hz を考えよう。 (2) 周波数ffzの正弦波を同時に発生させたときに観測される音波 a(t) を二つの三角関数の和の形で表せ。 (式になったの値は代入 しなくて良い。) (3) h = f1 = f +1 であることと、 三角関数の加法定理を用 いて、上の式を二つの三角関数の積(の定数倍) の形で表せ。 (4) この積に現れる二つの三角関数のグラフの概形をt=-1からt= 1までの範囲でそれぞれ描け. (一方は正確に描くのは人間には 不可能なので雰囲気で良い。 もう一方は正確に描くこと.) (5) (4) を用いて音波 α(t) の概形を描け. (6) この唸りの周期は何秒か? 以上.

回答募集中 回答数: 0
1/3