学年

教科

質問の種類

数学 大学生・専門学校生・社会人

ハテナのところのL、mは自然数であるからというのはなぜわかるのですか?

OO00 等差数列 (a}, {(b,} の一般項がそれぞれan=4n-3, bn=7n-5であるとき、 重要 例題93 2つの等差数列の共通項 の一般項を求めよ。 基本85)(重要10、 指針> a,=1+4(n-1)であるから, 数列 (an} の初項は 1, 公差は4. b。=2+7(n-1)であるから, 数列(bn} の初項は 2,公差は7 である 4(公差)=(nの 具体的に項を書き出してみると +4は7回 +4 +4 +4 +4 +4 +4 +4 Uく {and:1. 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61 e {bn}: 2, 9, 16, 23, 30, 37, 44, 51, 58, +7 +7 +7 +7 +7は4回 となり,これは初項 9, 公差28の等差数列である。 公差4,7の最小公倍数 よって {cn}:9, 37, 65, このような書き上げによって考える方法もあるが, 条件を満たす数が簡単に見つからか。 (相当多くの数の書き上げが必要な)場合は非効率である。そこで, 1次不定方程式(%s A)の解を求める方針で解いてみよう。 共通に含まれる数が, 数列 {an} の第1項, 数列{b.}の第m項であるとすると よって, 1, m は方程式 4/-3=7m-5 すなわち 41-7m=-2 の整数解であるから、ます。 この不定方程式を解く。 解として,例えば, 1=(kの式)が得られたら, これを a=4l-3の1に代入すればよい。 ただし,たの値の範囲に注意が必要である(右ページの検討参照)。 a=b。 解答 a;=bm とすると 4/-3=7m-5 よって 41-7m=-2 =3, m=2とした場合は 検討参照。 1=-4, m=-2は①の整数解の1つであるから 4(1+4)-7(m+2)=0 4(1+4)=7(m+2) 4と7は互いに素であるから, kを整数として 1+4=7k, m+2=4k 1=7k-4, m=4k-2 ここで,1, m は自然数であるから, 7k-421かつ 4k-221 ゆえに のすなわち と表される。 イ&はんかつね 満たす整数であるから。 然数である。 より,kは自然数である。 よって,数列 {cn} の第ん項は, 数列 {an} の第1項すなわち第 数列(b,}の第m頂す ち第(験-2)項として (7k-4)項であり 4(7k-4)-3=28k-19 い。 求める一般項は, kをnにおき換えて C,=28n-19

未解決 回答数: 1
数学 大学生・専門学校生・社会人

すごい簡単なことを聞いてるかもしれないんですけど、❔のところが分からなくて、どうやってb1、b3、、、とわかるのですか?

指針>2つの等差数列の共通な項の問題(例題 93)と同じように, まず, a:=Dbmとして、1とm C=b, C2=bs, C3=bs となっていることから, 数列 {bn} を基準として, bm+1 が数列a 列 {a}の項でもあるものを小さい方から並べて数列 {cm}を作るとき、数外に 数列{a,}, {b,}の一般項を an=3n-1, bn=2" とする。 数列 (bn} の項のうち、 重要 例題100 等差数列と等比数列の異週県 1c の一般項を求めよ。 重要 93, 基本物 関係を調べるが,それだけでは {cn}の一般項を求めることができない。 そこで、数列 {an}, {bn} の項を書き出してみると, 次のようになる。 {an}:2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, {bn}:2,4, 8, 16, 32, 形々 指査 の項となるかどうか, bm+2 が数列 {an} の項となるかどうか, を順に調べ、規則性 見つける。 解答 a;=2, b=2 であるから 数列 {an} の第1項が数列{bn} の第 m項に等しいとすると Ci=2 37-1=2" bm+1=2"+1=2".2=(37-1)·2 =3-21-2 よって, bm+1は数列 {an} の項ではない。 ゆえに の 43-○-1の形にならない。 のから bm+2=26m+1=3·47-4 =3(41-1)-1 のゆえに, bm+2 は数列 {an} の項である。 fcn}:b, ba, bs, ………) 数列 {co} は公比 2° の等比数列で, Ci=2であるから C=2-(2°)"-!=2n-1 (2 したがって 4c,= などと答えても い。 検討)合同式(チャート式基礎からの数学 A 参照)を用いた解答 3n-1=-1=2(mod 3) であるから, 2"=2(mod3) となる mについて考える。 [1] m=2n(n は自然数)とすると 227=4"=1"=1(mod 3) [2] m=2n-1(nは自然数)とすると 27-1=22(nー1).2=4"-1.2=1"-1.2=2(mod 3)

未解決 回答数: 1
数学 大学生・専門学校生・社会人

青チャートの問題なのですが❔のところがわかんないです。なぜ2θ+α=90°のときとわかったのでしょうか?他の問題のように単位円で範囲を絞ってこうと思ってもよくわからなかったです、、

重要例題162 図形への応用 (2) 点Pは円×+y?=4上の第1象限を動く点であり,点Qは円×+y°=16上の第 使眼を動く点である。ただし, 原点0に対して,常に ZPOQ=90° であるとす また、点Pから×軸に垂線 PHを下ろし, 点Qから×軸に垂線QK を下ろ *更に ZPOH=0とする。このとき,△QKH の面積Sは tan0= のと き,最大値コをとる。 [類早稲田大) 重要159 針> AQKH の面積を求めるには,辺 KH, QK の長さがわかればよい。そのためには, 点P と点Qの座標を式に表すことがポイント。 半径rの円x+y=r上の点 A(x, y) は, x=rcos a, y=rsinα (αは動径 OA の表 す角)とおけることと, ZPOQ=90° より, ZQOH=ZPOH+90° であることに着目。 解答 OP=2, ZPOH=0であるから, Pの座標は (2cos 6, 2sin0) 0Q=4, ZQOH=0+90° であるから,Qの座標は (4cos(6+90°), 4sin(0+90°)) 04 2 P すなわち(-4sin0, 4cosθ) ただし 0°<0<90° ゆえに S--KH-QK= -4 K 0 OH2 * (2cos0+4sin0).4cos@ 2 =2(2cos°0+4sin@cos0) =2(1+cos 20+2sin20)=2{/5sin(20+α)+1} 三角関数の合成。 ただし, αは sinα= 5 2 COS Q= 0°<α<90°を満たす角。<aは具体的な角として表す V5 (0°<) α<20+α<180°+α (<270°) よって, Sは20+α=90° のとき最大値(2(V5 +1)をとる。 ことはできない。 0°<0<90° から 1 20+α=90° のとき tan20=tan(90°-α)= COS Q =2 sina sina= V5 2 COS Q= 75 tan a 2tan0 =2 1-tan?0 ゆえに よって tan?0+tan0ー1=0 (tan0 についての2次方程 式とみて解く。 アー1+ 5 2 0°<0<90° より tan0>0であるから tan 0= 練習 0を原点とする座標平面上に点A(-3, 0) をとり, 0°<θ<120° の範囲にある0 102 に対して, 次の条件(a), (b) を満たす2点B, Cを考える。 (a) Bはy>0の部分にあり, OB=2かつ ZAOB=180°-0である。 (b) Cはy<0 の部分にあり, OC=1 かつ ZBOC=120° である。 ただし、 △ABC は0を含むものとする。 △0AB と △OACの面積が等しいとき, θの値を求めよ。 2) 0を0°<0<120° の範囲で動かすとき, △OABと △OACの面積の和の最大 値と,そのときの sin@の値を求めよ。 [東京大)

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

an≡19^n+(−1)^n-1・2^4n-3 (mod7) ≡(21−2)^n+(-1)^n-1・2・(14+2)^n-1 この部分ですが、2^4n-3から(14+2)^n-1となるのが何故かわかりません。 普通それだったら2^4n-4じゃないですか? それとも... 続きを読む

VEA TOR ムりゴ すべての自然数nに対して、整数 a.= 19" +(-1)"'2""-3 (n=1,2,3 .、 49= 14+5でもいいで すが 19-1-1ほう がのちのち計算しやす のすべてを割りきる素数を求めよ。 いです。 1の他数のかたまりをつく って消す。 14=0 解法の発想 21=0 =(-F-で --野 ません。このような場合は よって =0(mod7) 実験することで問題を理解し解答の方針が浮。 び上がってくることが多いのです。 7の倍数である。証明終 COMMENT なぜ証明が必要なのか? そこで、本書でも何度か出てきた 「実験 推測 証明」 数が7だとは論理上,断定できません。 の順で問題を攻略していきましょう。 問題で要求しているのは P解答 Oまずは実験をします a,= 19' +(-1)°- 2' = 21 =7×3 a,を割りきる素数は3か7だとわかる。 メで、 4末めるのは、 も7で割りきれることを ほかの as, a. のすべてを割りをる 数です。当然末める 素数は、a.を割り きる必要があります。 示す必要があります。 a= 19 +(-1)' - 2*= 329=D7×47 aを割りきる素数は47か7だとわかる。 のすべての a。 を割りきる素数を推測します すべてのa,を割りきる素数は7だと推測できる。 少し楽に記述できます。 Q 20-3 をもう一度取り上げ、合同式を用いて解いてみましょ 4a,aのどちらも割り きる素数は7しかあり ません。だから、 る素数も7だと推測で きます。 う。 推測が正しいことを証明します すべての自然数nに対して, 整数a,は7で 割りきれることを示す。 mod7 のとき,a,を計算して a,==0を目指す。 Theme 22 余りに関する問題Part2~合同式 253 252 第3章 整数問題の重要テーマ =19"+(-1)"2-(mod7)2 2

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

経済学の質問ですが、内容が数学のものでしたのでこの場を借りて質問させて頂きました。文章にある割引利得の数式の意味がわからなく、そのためにある補足説明も読みましたが、数学が苦手な私は数列と無限級数などざっくり説明されても分かりませんでした。もし誰か出来たら、写真上の文章をも... 続きを読む

られたらこちら 済学でよく用いられる方法は, 引利得の総和 (以下単に, 割利得 ガンマ, 小文字) に対して6万円の金が1年後には利子がついて! 1つを採用し, 繰り返し囚人のジレンマ、 略が対戦するとき、 毎回のゲームで行動の組 (C, C) が選択される。 将来利得が割り引かれる原因は, いろいろなものが考えられる。 たとえば, 金銭的な利得の場合, 預金の利子率y(ギリシャ文字の らこちらも協力に戻る戦略である。 列といい う。とく ように, 将来利得の割引 数列とし で公差 また が対戦するとき、 毎回のゲームで行動の組 (C,C) が選択さい このとき、 2人のブプレイヤーは利得5の無限列。 できる 5,5, に 数 を得る。このような利得の無限列の評価として, ゲーム理論ちの 済学でよく用いられる方法は, 割引村得の総和 (以下単に, 割引IBe 和という)である。割引利得の考え方は, 将来の利得を現在時点。 評価する場合,額面より割り引いて評価するというものである。た とえば、1年後にもらえる1万円を, 現在価値に換算して0.7万円 の和 と書 an が無 と評価することである。 この割引の係数0.7 のことを将来利得の割 引因子という。割引因子の値が大きいほど, 将来利得を現在利得 と同程度に高く評価する。 利得5の無限列 (5,5,)の割引利得科 は, 6 (ギリシャ文字のデルタ, 小文字) を将来利得の割引因子とする とき,等比級数の和の公式 ( ds ④) より, と 5+56+ 58 + 5 と計算される。 ここで, 6 (0<6<1) である。 1-6 ガンマ, 小文字) に対して8万円の預金が1年後には利子が 142 第7章 繰り返しゲー( 済がま

未解決 回答数: 1