学年

教科

質問の種類

数学 大学生・専門学校生・社会人

なんでこれ唐突にfx同士をかけてるんですか?

| 2次方程式ar-(a+1)x-a-3=0が, -1<x<0, 1<x<2の範囲でそれる。 OO0。 196 基本 例題126 2次方程式の解と数の大小 p.191 基本事項] つの実数解をもつように, 定数aの値の範囲を定めよ。 位 指針> (x)=ar?ー(a+1)x-a-3(aキ0) としてグラ フをイメージすると, 問題の条件を満たすには リ=f(x) のグラフが右の図のようになればよい。 すなわち f(-1) とf(0) が異符号 [a>0] la<り) y=f(x) 0 0 =fx) かつ f(1)とf(2) が異符号 である。aの連立不等式 を解く。 CHART 解の存在範囲 f(p)f(q)<0なら pとqの間に解(交点)あれ 解答 42次方程式であるから。 (x* の係数)キ0に注意 f(x)=ax°-(a+1)x-a-3とする。ただし, aキ0 題意を満たすための条件は, 放物線y=f(x) が -1<x<0, 1<x<2の範囲でそれぞれx軸と1点で交わることである。 f(-1)f(0)<0 かつ f(1)f(2)<0 f(-1)=a·(-1)*ー(a+1)·(-1)-a-3=a-2, 『すなわち 注意 指針のグラフから るように、a>0 (グラフが に凸),a<0(グラフが上 凸)いずれの場合も F(-1)f(0)<0かつ プ(1)f(2)<0 が、題意を満たす条件でお よって, a>0のとき、べ のとき などと場合がけを て進める必要はない ここで f(0)=-a-3, f(1)=a·1°-(a+1)·1-a-3=-a-4, f(2)=a·2°-(a+1)·2-a-3=a-5 f(-1)f(0)<0から ゆえに (a+3)(a-2)>0 a<-3, 2<a また, f(1)f(2) <0から よって の ゆえに (a+4)(a-5)>0 a<-4, 5<a 0.② の共通範囲を求めて よって a<-4, 5<a これはαキ0 を満たす。 -4 -3 5 に

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

ウォリスの公式の証明についてです。 1枚目の写真の問10が分かりません。 2枚目の写真の様に考えてみたのですが行き詰まって、他のアイディアが思い浮かばびません。 教えて下さい。

前節においては有限区間における有界な関数の積分を考えた。 この節では, $3 広義積分 113 n-1 In = -In-2 (n22). n In -Lh-3. In-e (m-2 0=x/2, h = 1 より (26) を得る。 n(n-2). n(n-2). T。 n …3-1 (n 奇数) ……4-2 ( 偶数) nENに対して, n!!:= M- n-3. n 2T 1-2 n-Ln-3. れ-2 3 とする。このとき, (26) は次のようにかける。 「h 年2 Tw2 (n 偶数) 2 こ4TA M-L-2.In-4 n In = 1-4 u (まスラ0) (n 奇数)。 0<とく要 = h-」.h-2 市困> さて,(O, t/2) で、sin?n+1x ゆえに, 上記の結果より, i. A sin2n x < sin?2n-1 x であるから, I2n+1 < 12n < Izn-1. (:0<qnk<) (n=,t,2, (2n-1)!! π 2 よって, 1 (2n-1)!! π 1 (27) 2n+1 (2n-1)!! 2 2n (2n-1)!! よって れ )1u (28) 21+1 t to 2n+1 1 2 1 2 2n+1 2n T Dah π ゆえに しはさ4うち。里さり、 2 2 = lim 2n. J(2n-1)!!]? (2n(29) Jen Len 方on-! =T n→0 これから, i(に)T 所(an-)! =STE 1 Vェ= lim 22n(n!)? = lim Vn (2n)! (30) ウォリス CWallis) これをワリスの公式という. ニこて Vn (2n-1)!! 1em) n→0 n→0 (2n)! (nコ (2n)!! -@n)-2n-2).4 =An-cn-t) 2·よ 問9 Vれ (n→). An! 問 10 (29) から次の式(これもワリスの公式という)を導け。 1 コ 1 (2n-2)? 1 2 lim {1 22 (2n)? m→0 22 42 62 $3 広義積分

解決済み 回答数: 1