学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(1)は解けました😊 (2)と(3)が難しいです、、。 (2)とかは全て正しく読み込めたと仮定する〜から始めたらなんとかいけそうな気するんですけど、そこから手が進まないです、、

12 雑誌を含めて, 全ての書籍に付与されている固有の番号, ISBN (International Standard Book Num- ber) の秘密について考える. 例: ISBN 4910054230772 末尾の「2」は,「チェックディジット」 とよばれるもので, その前の12個の数字列 491005423077が 正しく入力されたかどうか(例えば, バーコードが正しく読み取れたかどうか) を確認するものである. ここで, チェックディジット 「2」は,「491005423077」 から次の規則により定まっている. 1. 先頭位の数字から順番に, 1,3を掛けていく: 4 9 1 005 4 2 3 0 7 7 x1 x3 x1 x3 x1 x3 x1 x3 x1 x3 x1 x3 4 27 1 0 0 15 4 630 7 21 2. 得られた数を加えて, 10で割った余りを求める(法10で評価する): 4+27 + 1 + 15 +4+6+3+7+21 = 4 +7+1+5+4+6+3+7+1=8 (mod 10) 3. 得られた数 「8」 を10から引いて, チェックディジット 「2」を得る. 10-8=2. 但し, 2. で得られた数が0の場合は, チェックディジットを0 とする. (1) あなたの手元にある本の ISBN について, チェックディジットを確認せよ. (2) 本の汚れなどの理由で, バーコード読み取り機が,ある1つの数字を読み違えたとする. この間違 いのままチェックディジットを計算すると, その値は、真の値とは異なることを一般的に論ぜよ. (3) バーコード読み取り機が,隣り合う場所にある数字1組についてそれら2つ値を入れ替えて読み 取ってしまった. この場合は間違いの検知率は100% ではない. その理由を一般的に論ぜよ.

解決済み 回答数: 2
数学 大学生・専門学校生・社会人

統計学検定3級の問題です なんでこの公式?で相関係数が求められるのですか? sxy/sx*syの公式をどう変形したら3枚目の写真の形になるのでしょうか 教えてください!

問13 2つの変数x, y について次のデータが得られた I y 〔1〕xとyの相関係数はいくらか。次の①~⑤のうちから最も適切なものを一つ 選べ 19 1709 ① 0.85 ② 0.34 ③ 0.11 001122 361 Lpatos A [2]xおよびy の出現頻度に関して,次の I ~ⅢI の記述を考えた。 相関係数 I.xの値は0,1,2が同じ頻度で出現した。 Ⅱ.yの値は1,2,34,5,6の2倍の頻度で出現した。 ⅢI.xが1であったとき、yの値は1のみ出現した。 相、平 4 25- IとⅡIとⅢIはすべて正しい x分散・分散 この記述 I~Ⅲに関して、次の①~⑤のうちから最も適切なものを一つ選べ。 2001-10 Ⅰ のみ正しい人 ② ⅡIのみ正しい ③ ⅢIのみ正しい ④ ⅠとⅡIのみ正しい 分音 6 4 -0.24 問14 ある中学校で数学と理科の試験を行ったところ、 数学と理科の得点の相関係数 は 0.24 であった。 各生徒の得点をそれぞれ2倍したとき, 数学と理科の得点の相関 係数は0.24の何倍になるか。 次の①~⑤のうちから適切なものを一つ選べ。 BOLSO 21 ①1/√2 ② 2 ③ 1 -0.79 直一平均12 PRELA 2 46 4 問15 次の散布 ある。 なお 理科の得点(点) 100 90 80g 70 60 50 【名】統計検定3級・4級 【本書の感想】 本書をどこでお知りにな 後を考えている

未解決 回答数: 1
数学 大学生・専門学校生・社会人

この問題の[4-1](1)についてですが示すまでの理解はできるんですが三角不等式を用いて示すっていうのがよく分からないです💦 ここはどういう感じの証明を書けばいいのでしょうか? また、他の問題もどうやって解くのか教えてほしいです! よろしくお願いします🙇‍♂️

[4-1] {an}neN>{bn}neN CR, a,be R, と仮定し,0に対し、 をみたす Ne, Ne∈Nが与えられているとする. このとき,次を示せ . (1) |6| ≤ 1 + |6| for all n∈Nf.. (Hint. bn= (bm-b) +6 に対して三角不等式を用いよ) THE (2)>0 に対し, 61 (E) = 1+ |a|+|b| と、 Jan - all ≤efor alline N, 16-6 ≤e for all neNA. (3) (2) において ana, bnb asn→∞ (従って, |0| ≤1+|6|,|0-al≤e1 (c), 10-bel (e) for all n ∈NN.. (従って, anbabasn→∞ が成り立つ.) (3) (2) において, 1 on lanbn-abl≤lan-all bnl + |al|bn-b|≤e for all ne NN. E = jare. >0,Ne=max{N1, Na(e), Na(e)} EN とおく [4-2] [41] において, {bn}neN CR\{0}, b ∈ R\{0} とするとき, ([4-1] の (前提の)記 号の下で)次を示せ . (1) Eo= = 10/11 > >0とおくと befor alline No. (Hint. b= (b-bm) +6m に対して三角不等式を用いよ.) (2)>0に対し,1 (€)=260,Ne=max { Neo, Na(e)}EN とおくと, 1 ≤ —, |b₁-b| ≤ €₁(e) for all n € N₁₂. NN・ |bn| E0 27/0 b Ibn-b) ≤ 1 | 12/23 - 12/10 = <e for all n E NN bn 16m-61 |b||b₂| asn→∞ が成り立つ) [bn] ≤ 1+|bl

回答募集中 回答数: 0