学年

教科

質問の種類

数学 大学生・専門学校生・社会人

整数の問題です。play2の?がふってある部分について、いまいち何を言ってるのかよく分かりません…。もう少し噛み砕いて教えて頂くことはできますか?😭😭

77 特別区Ⅰ類20 PLAY 2 最大公約数と最小公倍数の問題 3つの自然数 14, 63, n は、 最大公約数が 7 で、 最小公倍数が882である。 nが300より小さいとき、 自然数nは全部で何個か。 1. 218 2. 318 最大公約数や最小公倍数の性質は理解できたかな? 3. 418 14 = 7 x 2 63=7 n = 7 882 = 7×2×32×7 72×2×32 は300より小さい自然数であることを、しっかり頭に入れて解きましょう。 14,63, n の最大公約数が 7 なので、 n は 7 を約数に持つ、 つまり、7の 倍数ですから、n=7m (mは整数) とおきます。 ×32 4. 518 また、 14 = 7 x 2.63 = 7× 32 ですから、これらを次のように並べ、最 小公倍数が882 = 2 × 32 x 72 になることを考えます。 xm ← -最小公倍数 最小公倍数の 882 は、 14,63, nのすべてで 割り切れる最小の数ですから、これらの数の素因 数 (素数の約数) をすべて含んでいることになり ますね。 しかし、 14, 63 の素因数に 「7」は1つしか ありませんので、最小公倍数 882 の素因数に 「7」 が2つあるということは、nの素因数に 「7」が 2つあることになります。 そうすると、とりあえず、m=7 であれば、 n=7×7となり、 条件を満たすことがわかり ますが、 m には、 その他の 「2×32」の全部ま たは一部が因数に含まれていても、 最小公倍数は 変わりませんので、n は次のような数が考えられ ます。 そうなの?? 5. 618 ない 71882 71126. 2118 319 3 たとえば、 6と9の最小公 倍数 18 は、次のように、 それぞれの素因数をすべて 含む最小の数だよね。 6=2x3 9 = 3×3 18=2×3×3 たとえば、n=7²×2× 3294 とかでも、次の ように素因数は882に含 まれるでしょ!? 14 = 7×2 63 = 7×32 294 = 7²×2×3 882=7²×2×32 m = m m m m m 4 正解

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

(1)は解けました😊 (2)と(3)が難しいです、、。 (2)とかは全て正しく読み込めたと仮定する〜から始めたらなんとかいけそうな気するんですけど、そこから手が進まないです、、

12 雑誌を含めて, 全ての書籍に付与されている固有の番号, ISBN (International Standard Book Num- ber) の秘密について考える. 例: ISBN 4910054230772 末尾の「2」は,「チェックディジット」 とよばれるもので, その前の12個の数字列 491005423077が 正しく入力されたかどうか(例えば, バーコードが正しく読み取れたかどうか) を確認するものである. ここで, チェックディジット 「2」は,「491005423077」 から次の規則により定まっている. 1. 先頭位の数字から順番に, 1,3を掛けていく: 4 9 1 005 4 2 3 0 7 7 x1 x3 x1 x3 x1 x3 x1 x3 x1 x3 x1 x3 4 27 1 0 0 15 4 630 7 21 2. 得られた数を加えて, 10で割った余りを求める(法10で評価する): 4+27 + 1 + 15 +4+6+3+7+21 = 4 +7+1+5+4+6+3+7+1=8 (mod 10) 3. 得られた数 「8」 を10から引いて, チェックディジット 「2」を得る. 10-8=2. 但し, 2. で得られた数が0の場合は, チェックディジットを0 とする. (1) あなたの手元にある本の ISBN について, チェックディジットを確認せよ. (2) 本の汚れなどの理由で, バーコード読み取り機が,ある1つの数字を読み違えたとする. この間違 いのままチェックディジットを計算すると, その値は、真の値とは異なることを一般的に論ぜよ. (3) バーコード読み取り機が,隣り合う場所にある数字1組についてそれら2つ値を入れ替えて読み 取ってしまった. この場合は間違いの検知率は100% ではない. その理由を一般的に論ぜよ.

解決済み 回答数: 2