学年

教科

質問の種類

物理 高校生

(2)でなぜBが高電位になるのか分かりません 回転すると右向きの磁束が増えるからそれを妨げるために、AからBの向きに電流が流れるのでAが高電位になるんじゃないんですか?

f B セント 135 〈交流の発生> 113 (2) 辺abは磁場を横切る体なので、 誘導起電力の式 「V=Blo」 を用いる。 (3)(pq間に発生する誘導起電力) (コイルの各辺に生じる誘導起電力の和) 標準問題 (5) コイルに生じる誘導起電力の大きさは、ファラデーの電磁誘導の法則 「V=-N4 at」を用いる。 A 135.〈交流の発生> 図1のような辺の長さが1の正方形 abedからなる1回 巻きのコイルを,磁束密度Bの均一な磁場の中に置き、 磁 力線に垂直な軸のまわりに,一定の角速度で図の矢印の 向きに回す。 コイルの両端はそれぞれリング状の電極p と qを通して,常に抵抗Rとつながっている。 このとき、コ イルは回転するが, リング状の電極と抵抗は静止したまま である。図2(a) と (b)は回転軸にそって見たコイルと磁力線 (a) = 0 である。図2のように,コイルの面と磁場の角度は,時 N S P 9 R- 図 1 B (b) t=to N S N S 刻 t=0 のとき 0=0, 時刻t=to のとき 0<B<1であ R cd ab 8 図2 った。次の問いに答えよ。 [A]各辺に生じる誘導起電力を考えることで, pq 間に発生する誘導起電力を考える。答 えには1,B,w, tのうちから必要なものを用いよ。 〇 (1) 辺 ab 部分の速さを表せ。 (2)時刻における辺 ab 部分に生じる誘導起電力の大きさを表せ。 (3) 時刻 t における各辺に生じる誘導起電力を足し合わせることで, pq間に発生する誘導 起電力 Vの大きさを表せ。 〔B〕 ファラデーの電磁誘導の法則を考えることで, pq 間に発生する誘導起電力を考える。 答えには l, B, w, tのうちから必要なものを用いよ。 (4) 時刻 t におけるコイルを貫く磁束を表せ。 (5) 時刻 t におけるコイルに生じる誘導起電力 Vの大きさを表せ。 ただし、必要であれば, 次式を利用してよい。 Asin wt =wcoswt, 4t ⊿coswt =-wsin wt At [C] 抵抗に流れる電流I と消費電力Pを考える。 p から抵抗を通って q に流れる電流の向 きを正とする。 記 (6) 時刻 t = to における辺 ab に流れる電流Iの向きを図1に矢印で示せ。 また電流Iに よってコイルが磁場からどのような向きの力を受けるか説明せよ。 (7) 消費電力の最大値 Pmax を1, B, w, R のうちから必要なものを用いて表せ。 また, P と wtの関係を 0≦wt2 の範囲でグラフに図示せよ。 [23 徳島大〕 (8)電流が磁場から受ける力 「FIBL」の向きは、フレミングの左手の法則より判断する。 2 (7)消費電力Pは, 「PIV=PR=」から適当な形の式を用いる。 〔A〕 (1) 辺abの速さひab は, コイルの回転半径が であるので,速さと角 2 速度の関係式 「v=rw」 より Vab 51=- (2) 時刻において,辺ab は水平から角度 wt 回転しているので 辺ab の磁 場に垂直な方向の速度成分 Vabi は図a より 上向きを正として Vabi = Dab COSWt=coswt と表される。 辺ab に生じる誘導起電力の大きさ | Vab|は, 「V=Bl」 より |Vab|=|Blvabi|=| 11=B1.12 cost=/12/Blacoswt| このとき,swt< ならば誘導起電力の向きはレンツの法則A より bが高電位となる向き ※Bである。 (3) 磁場を垂直に横切る辺は辺abと辺cdであり, これらの辺にのみ誘導起 電力が生じる。 辺cdについても 時刻に生じる誘導起電力の大きさを |Veal として求めると, 辺ab についての(1),(2)と同様になり <<-*A によっ くる磁 れた磁 B 公式カ 状 |V|=|Blucas|=|Bl-cos wt|=Bl³w|cos wt| 誘導書 Out < ならば誘導起電力の向きはレンツの法則よりdが高電位とな る向きである。 求め V=|Van|+|Vcal=12Blwlcoset|+1/2 よって Vab と Veaの誘導起電力の向きは同じ方向であるので, pq間に発 生する誘導起電力の大きさ Vは Blwcoswt|=Bl°ω\coswt| 〔B〕 (4) コイルの面積をSとする。 時刻において, コイルは水平から角 ・度回転しているので、 磁場に対して直角方向に射影したコイルの面積 Sは図bより S=S|sint|=|sinet| このとき、コイルを貫く磁束は、磁束の式 「Ø=BS」より, 0<wt<πで のコイルの向きに対してコイルを貫く磁束を正とすると =BS = Blsinat (5)(4)においてコイルに生じる誘導起電力 Vの大きさ|Vは,ファラデーの 電磁誘導の法則 「V=-N2」より 4t |V|=|-1×40 |=|_ A(BIªsinwt)|=|- BF²-- =l-Bl2wcoswtl=Blw\coswt|C Asin wt At ---

回答募集中 回答数: 0
物理 高校生

物理 132番の(ケ)について質問です (ケ)のときコイルの誘導起電力はi1の向きと同じなので符号は正と考えたのですが回答では負でした。なぜ負になるのかを教えてください🙏

抵抗 R O スイッチS に比べて増加するか、するがす (i) コイル2の長さを軸方向に押し縮めた後に、 同じ実験をした。 (i) 鉄心を引き抜いた後に、同じ実験をした。 132. 〈コイルを含む直流回路> 〔19 大阪府大 改 からの距離 (m) うう。 導体棒中 ■における電場 反時計回りに, 電力が生じる。 印b の向 ■に電流が流れ 図1の矢印 はたらくと考え である。 [15 同志社大 〕 次の文章のアコに当てはまる数式または数値を 答えよ。 また、サに当てはまる語句を答えよ。 h c L b Ix d f R 図に示すように抵抗とコイルをつないだ回路で, スイッ チSを閉じたり開いたりしたときに回路に流れる電流を考 えよう。 電池の起電力をE. コイルの自己インダクタンス L. 2つの抵抗の抵抗値は図のようにr, Rとする。 電池 と直列につながれた抵抗値の抵抗は電池の内部抵抗と考 えてもよい。 また, 導線およびコイルの電気抵抗は無視できるものとする。 a +r ch S E スイッチSを閉じた後のある時刻にコイル, 抵抗値Rの抵抗を図の矢印の向きに流れる電 流をそれぞれ I, と書くことにする。 このとき, 抵抗値の抵抗を流れる電流はア となる。 経路 abdfgha についてキルヒホッフの法則を適用すれば、 電池の起電力と回路に 流れる電流の間にはE=イの関係が成りたつ。 一方,このときコイルを流れる電流が 微小時間 4t の間に 4 だけ変化したとすると, 経路 abcegha についてキルヒホッフの法則 を適用すればE= ウ の関係が得られる。 スイッチSが開いていて回路に電流が流れていない状態でスイッチSを閉じたとき、その 直後に回路に流れる電流は, L=エ=オとなる。したがって、スイッチSを閉 じた直後にコイルに生じる誘導起電力の大きさはE, r, R を用いてカと表される。 方, スイッチを閉じてから十分に時間が経過した後にコイルに流れる電流は、ムキ であり,このときコイルにはクだけのエネルギーが蓄えられることになる。 to D

解決済み 回答数: 1
物理 高校生

どうして電池の仕事がコンデンサーのだけになるんですか? 抵抗にも仕事しないんですか?? 教えて欲しいです🙇‍♀️

必解 107. <スイッチの切りかえによる電荷の移動〉 R R[Ω] 図のように,電圧 V [V], 2V [V] の電池 E1, E2, 電 S1/S2 気容量がいずれもC[F]のコンデンサー C1, C2,抵抗値 R[Ω] の抵抗 R, スイッチ S1, S2 が接続されている。最 初, スイッチ S, S2 は開いていて, C1, C2 には電荷は蓄 えられていないものとする。 また, 電池の内部抵抗は無 視できるものとする。 次の問いに答えよ。 (1) S を閉じてから十分に時間が経過した。この間に電池 E がした仕事を求めよ。 の C2. C[F] C1 C[F] T E1 VVX E2 Vo [V] 2V (V) (2)次に,S1 を開き S2 を閉じた。十分に時間が経過した後のC2 の両端の電位差を求めよ。 また,この間に電池 E2 がした仕事を求めよ。 [し] VOX (3) 続いて, S2 を開き, S1 を閉じた。 十分に時間が経過した後, S を開き S2 を閉じた。さら に十分に時間が経過した後の, C2 の両端の電位差を求めよ。 (4)この後,(3)の操作をくり返すと, C2 の両端の電位差はある有限な値に近づく。 その値を 求めよ。 コンデンサー [17 大阪市大〕 必解 108. <極板間の電場と電位〉 真空中で図1のように, 2枚の薄い金属板 A, B を間隔d 〔m〕 は なして配置した平行平板コンデンサーの両端に起電力 V [V] の電 池とスイッチSがつないである。 dは金属板の大きさに対して十分 A IB

解決済み 回答数: 1
物理 高校生

qEによって上に+が移動するから右にqvyBの力が働くならどうして最後下に働いた力によって左に力が働かないんですか?

電場や磁場の影音 電気量g(g0) の荷電粒子が時刻 t = 0 に原点0から初速度 = (u, 0)(o> 0) 図1のように, y 軸方向正の向きに強さE の一様な電場がかかっているとする。質量m, で運動を開始した。 時刻 t でのこの粒子の位置は である。 = い (あ、 (x,y) ) 図2のように,x 平面に垂直に、紙面の裏から表に向かって,磁束密度B の一様な磁 場がかかっているとする。質量m, 電気量 q(q > 0)の荷電粒子が時刻 t = 0 に原点 0から初速度v=(-v0) (0)で運動を開始した。 この粒子が運動開始後に最 初に軸を通過するときの時刻はt= で、そのときの座標は う (x,y)=(0, 小巻 である。 平 初めてとなる時に初に置かれ 図3のように, y 軸方向正の向きに強さ E の一様な電場と, xy 平面に垂直に紙面の裏 から表に向かって,磁束密度B の一様な磁場の両方がかかっているとする。 質量m,電 気量 g(g> 0)の荷電粒子が時刻 t = 0 に原点0から初速度。 = (0,0)で運動を 開始した。この粒子のX軸方向, y 軸方向の速度をそれぞれ Ux, Uy, 加速度をそれぞれ ax, ay とすると,運動方程式は TE ひ v x 図1 図2 → x この衝突が起きるには、エネ <号を満たす特別な値となる y B 図3 x

解決済み 回答数: 1
1/9