学年

教科

質問の種類

物理 高校生

(1)についてです ma=Fという公式を使うのはわかるのですが、右辺のFをどう求めたのかがわかりません なぜ10.0−4.9をしてFが出るのでしょうか 教えていただけると幸いです

基本例題14 摩擦力と加速度 m 図のように, 粗い水平面上に置かれた質量 1.0kgの物体に, 右向きに 10.0Nの力を一定の時間加えてすべらせたあと, 力 を加えるのをやめた。 次の各問に答えよ。 ただし, 物体と面 との間の動摩擦係数を0.50, 重力加速度の大きさを 9.8m/s2 とする。 基本問題 94,95,96 10.0 N AN垂直抗力 →a 加速度 g 動摩擦力 (1) 力を加えている間の, 物体の加速度を求めよ。 Vmg =1x9.8 (2) 力を加えるのをやめたあと, 物体がすべっている間の加速度を求めよ。 指針 物体は,左向きに動摩擦力を受けて いる。「F' =μ'N」 の式を用いて動摩擦力の大き さを求め, 運動方程式から加速度を求める。 =9.8N 右向きを正とし, 加速度をα 〔m/s2] とすると, 運動方程式 「ma=F」 は, 1.0×α = 10.0-4.9 α=5.1m/s2 ■解説 (1) 鉛直方向の力のつりあいから, 垂直抗力Nは重力に等しく, N=1.0×9.8=9.8 右向きに 5.1m/s 2 Nなので、動摩擦力 F'' は, F'=μ'N=0.50×9.8 =4.9N a₁ 9.8N (2)力を加えるのをやめたあとも、面をすべっ ている間, 物体は左向きに 4.9Nの動摩擦力を 受ける。 右向きを正とし, 加速度を α2 〔m/s2] とすると, 運動方程式 「ma=F」は, |10.0N 物体が受ける力は図の 1.0×αz=-4.9 a2=-4.9m/s2 ようになる。 74.9N 9.8N 左向きに 4.9m/s2 (2

解決済み 回答数: 1
物理 高校生

(2)についてです なぜ(1)でつくった式の➀か②を代入したら及ぼし合う力の大きさが求められるのかわかりません どなたか教えていただけると幸いです  よろしくお願いします

第Ⅰ章 運動とエネルギー 基本例題11 接触した2物体の運動 基本問題 ma 3kg 2kg B 水平でなめらかな机の上に, 質量がそれぞれ2.0kg, 3.0kgの物体A, B を接触させて置く。 A を右向きに 20N の力で押し続けるとき, 次の各問に答えよ。 (1) A, B の加速度の大きさはいくらか。 (2) A, B の間でおよぼしあう力の大きさはいくらか。 ■指針 2つの物体が接触しながら運動して いるとき, 作用・反作用の法則から、2つの物体 は,大きさが等しく逆向きの力をおよぼしあって いる。 A, B が受ける力を図示し, それぞれにつ いて運動方程式を立て、 連立させて求める。 ■解説 (1) AとBがおよぼしあう力の大 きさをF〔N〕 とすると, 各物体が受ける運動方 f 20N 向の力は、図のようになる。 運動する向きを正 とし, A, B の加速度をα 〔m/s2] とすると, そ れぞれの運動方程式は, A: 2.0×α=20-F ... ① B:3.0 xa=F ... ② 式①,② から, a=4.0m/s2 (2) (1)の結果を式 ② に代入すると, 3.0×4.0 =F F=12N m B Point F[N] [F[N] [a [m/s2] A 20N A,Bをまとめて1つの物体とみなすと, 運動方程式は, (2.0+3.0)a=20となり, αが 求められる。 しかし, F を求めるためには,物 体ごとに運動方程式を立てる必要がある。 P= 基本例題12 連結された物体の運動 ◆基本問題 88, 92

解決済み 回答数: 1
物理 高校生

この質問に答えて。問題はコメントにある。

4 (1)Ua= Cr(p-pal) Vo + Cop(V-Va) R (5) 圧力: 温度: -p (V-Va) U₁ = Capo (V - V₁) + Cv (p-po) V [考え方 R - po (V - Vo) から熱が 変化と (2) 考え方参照 考え方 (1) 気体の内部エネルギーの増加は、外 から与えられた熱量と仕事の和に等しい。 圧力po. 体積Voのときの温度をTとし,p, Vのときの温度をTとする。 また,過程Aで, P.Voのときの温度をT,過程で、po. Vのときの温度をT』 とすれば、次の4つの 状態方程式が成り立つ。 PoVo=RTo PV=RT pV = RT poV = RTs)..... 過程Aでの内部エネルギー増加U』は、 Us=Cr(Ta-To) + C, (T-TA) -p(V - Vo) PV の関係が y= である。 はじめの の圧力〔 1x ゆえに、 ① P = ここで, logio ~ ② ②式に①式から得られる To TA, T を代入 すると, Cr(p-po) Vo +Cpp(V-Vo) U₁ = R さらに, -0.0 -p (V - Vo) 過程Bでの内部エネルギーの増加 UB は, UB = C, (Ts-To-po (V-Vo) + Cv (T - TB) なので、 log10 対数法則 [10] ③れば せ ③式に①式から得られる To T, T を代入の?p= すると, UB = Cppo (V-Vo) + Cr(p-po)V R -po(V-Vo) (2)過程A, B のどちらでも,最初と最後の状 態は同じなので, UA = UB となる。 よって、 ② ③式を代入すると, Cp(p-po) (V-Vo)-Cr(p-po)(V-Vo) となり, R =(p-po) (V-Vo) Cp-Cv=R 240 定期テスト予想問題の解答 すなわち 次に ヤルルの 1 > 273 ゆえに、 (補足) を求める y=1 と表す。 対数関数 k loga

解決済み 回答数: 2
物理 高校生

至急お願いします🙇‍♀️🙇‍♀️🙇‍♀️ (2)で、向心力は円の中心に向かう向きに働く力だから、上側にはたらくと思ったんですけど、どうして下向きなんですか??

。 基本例題30 鉛直面内の円運動 図のように,質量mの小物体が, 摩擦のない斜 面上の高さんの点から静かにすべりおりた。 斜面 の最下点は半径rの円の一部になっている。 重力 加速度の大きさをg として 次の各問に答えよ。 (1) 斜面の最下点での小物体の速さを求めよ。 om 1501 (2) 斜面の最下点で, 小物体が面から受ける垂直抗力の大きさを求めよ。 指針 (1) では, 力学的エネルギー保存の 法則から速さを求める。 この結果を用いて, (2) では,最下点での半径方向の運動方程式を立てる。 解説 (1) 最下点での速さを”とし す べり始めた直後と最下点に達したときとで, カ 学的エネルギー保存の法則を用いる。 最下点を 高さの基準とすると, 1 mgh= mv2 2 v=√2gh (2) 重力と垂直抗力の合力が、 最下点での小物 基本問題 213 02 m-=N-mg 体の向心力になる。 半径方向の運動方程式は, AN JON r (1)の結果を用いて, N=mg (1+ (1+2/7 ) mg Point 鉛直面内の運動は等速円運動とならな いが,各瞬間において, 等速円運動と同様の運 動方程式を立てることができる。

解決済み 回答数: 1