学年

教科

質問の種類

数学 高校生

⑴の(iii)の別解なのですが、三次関数とかでもないのにどうして増減表を使って求められるのかわかりません。あと単調増加に極値はあるものなのですか。よろしくお願いします🙇

4 次の問題について,しずかさん、れいさん,ゆうだいさんの3人が議論をしている。 問題ある学校の文化祭では、 縦8mの垂れ幕が垂直な壁にかかっていて, 垂れ幕の下端があ る人の目の高さより2m上方の位置にある。この人が壁から何m離れて見ると, この垂れ幕 の上端と下端を見込む角が最大となるか。 しずか 右図のように、 直線 l を壁として, 点Aを垂れ幕の上 端, 点Bを垂れ幕の下端, 点Dを垂れ幕を見ている人 の目の位置とした。 この垂れ幕の上端と下端を見込む角 ∠ADB の大きさを0とおいて, 0が最大となるときの 点Dの位置を求めればよい。 ・れい 0が最大となるときの点Dの位置を求めたいから,点D から直線 l に垂線 DC を下ろし、 線分 DC の長さを xm とする。そして, 三角比を使って式を作ればよい。 ゆうだい D l A 18m B 12m 角度の問題だから, 2点A, B を通り半直線 CD に接する円をかいて, 円周角の定理あるいは 円周角の定理の逆を使えばよい。 このとき、次の問いに答えよ。 (1) 図とれいさんの考えを使って問題を解くとき、次の小問に答えよ。 (i) ∠ADC= α, ∠BDC = β として, tan0 を tana, tan β を用いて表せ。 (ii) tan 0 を x を用いて表せ。 (iii) 0 が最大となるときの, tan0 と xの値をそれぞれ求めよ。 (2) 図とゆうだいさんの考えを使って問題を解くとき,この人がこの垂れ幕の上端と下端を見込 む角が最大となる位置は, ゆうだいさんのかいた円と半直線 CD との接点になることを示せ。

解決済み 回答数: 1
数学 高校生

練習14の(2)のグラフなのですが、なぜ−1、1、3が出てくるのか教えてほしいです💦

あ 教科書 p.209~212 (3) f(x)=-3-2 任意の実数xに対して, -3x≧0 であるから f* (x) <0 よって、常に単調に減少する。 B 関数の極大, 極小 科書 p. 212~213 関数の極値, グラフ f'(a)=0 であっても, x=αの前後でf'(x) の符号が 変わらないときはf(a) は極値ではない。 y=0 とするとx=-2 練習 (1) y=3x2+12x+12=3(x+2)2 13 次の関数の極値を求めよ。 また、 そのグラフをかけ。 (1) y=2x3+3x² (2)y=-x+x²+x 教 p.211 の増減表は次のようになる。 x -2 ...... y' + 0 + y > -3 [指針) 関数のグラフと極値 y=0 となるxの値を求め, 増減表をかく。 増減表で は大極小の区別を記入し, グラフでは極大となる点と極小となる点の座 標がわかるようにかく。 解答 (1) y=6x2+6x=6x(x+1) x=-1,0 y = 0 とすると の増減表は次のようになる。 ゆえに、グラフは図のようになる。 y=-3x² (2) y=0 とすると x=0 yの増減表は次のようになる。 2 1 3 -3 x -1 0 ...... y' + 0 0 + 極大 ...... x 0 ...... y' 0 - y 2 V y 4 極小 1 > 0 ゆえに、グラフは図のようになる。 教 p. 213 (2) y = 0 とすると また, グラフは図のようになる。 y=-3x²+2x+1=-(3x+1)(x-1) ゆえに, yはx=1で極大値1, x=0で極小値 0 圈 練習 15 (1) y=3x+4x3-12x2+5 次の関数の極値を求めよ。 また、 そのグラフをかけ。 x=-1/3.1 3' (3) y=-x+4x3-4x2+2 (4) y=x^+2x+1 (2) y=x^-8x2+16 yの増減表は次のようになる。 x 1 y' y A 1 0 3 + 0 小52 極 極小 極大 1 27 1 5 ゆえに, yはx=1で極大値 1, x=- また, グラフは図のようになる。 y=0 とすると x=0, 1, -2 指針 4次関数の極値グラフ 3次関数の場合と同様に, y = 0 となるxの値を 求め、増減表をかく。 増減表では極大, 極小の区別を記入し,グラフでは極 大となる点と極小となる点の座標がわかるようにかく。 解答 (1) y'=12x+12x2-24x =12x(x²+x-2)=12x(x-1)(x+2) 1/1/3で極小値 よって、yの増減表は次のようになる。 527 1 -2 0 27 x + 0 y' 0 + 0 練習 極大 極小 14 (1) 次の関数のグラフをかけ。 y ✓ 5 -27 教 p.212 ■■ y=x3+6x2+12x+5 (2) y=2x3 -----27 ゆえに,yはx=0で極大値 5,x=-2で極小値 27, x=1で極小値0を とる。 また, グラフは図のようになる。 A 極小 0 第2節 導関数の応用28

解決済み 回答数: 1