学年

教科

質問の種類

数学 高校生

この問題のエ.オには0.6がはいり、カ.キには1.2が入ります。 なぜ両方の求め方で正規分布N(51.0,0.3^2)に従っているのに標準偏差の値が変わるのでしょうか、? 求め方が違うということがやかるのですがなぜ値が変わってくるのかわかりません。。わかる方いらっしゃいまし... 続きを読む

第5問 (選択問題) (配点 16) 以下の問題を解答するにあたっては、必要に応じて(第5回-16) ページの正規 分布表を用いてもよい。 統計的な推測においては、本質的に重要な性質がある。それについて考えてみよう。 (1)母集団から無作為抽出された標本の独立性とその特徴について、実際の例をもと に考える。 いま, 内容量 50g と表示された小袋が四つ入ったお菓子の袋(以下,「大袋」と呼 ぶ)があったとする。以下では、袋の重さは考えずに、お菓子の重さだけを考える ことにする。四つの小袋に入っているお菓子の重さを,それぞれ X1,X2, X3, X4(g) とし,各X, (i = 1, 2, 3, 4) は平均 (期待値) 51.0 標準偏差 0.3 の正規分布 N (51.0, 0.32) に従うとする。 このとき,Y=X1+X2+X』+X」 とおけば、各Xは互いに独立と考えてよいか ら、確率変数Yの平均はE(Y) 計算できる。 標準偏差は (Y)= アイウ エ. オ と ところで,大袋に表示されているお菓子の重さは50×4=200(g) である。これ と対比するために,小袋に分けられていない四袋分のお菓子の重さを表す確率変 数Z = 4X を考える。 ここでXは正規分布 N (51.0, 0.32) に従うとする。 このとき,確率変数の定数倍の平均と標準偏差についての関係式によれば,Zの キ 平均はE(Z) = アイウであるが,標準偏差は (Z)= カ となり,上 で求めた。 (Y) の計算結果と異なる。この差は,X1,X2, Xs, X4 が無作為標本で あり、各X; が互いに独立であることに起因している。 この例からわかるように、無作為標本の性質,すなわち,確率変数が互いに独立 な同一の分布に従っていることを理解しておくことが重要である。 (数学II,数学B,数学C第5問は次ページに続く。) (第5回13)

回答募集中 回答数: 0
数学 高校生

KP②-5 ソタについてなのですが、確率変数Wは卵1個の重さを表しているのは理解してるのですが、2枚目の写真の黄色のところと緑のところが同じ?置き換え?られてる理由がわかりません。 どなたかすみませんがよろしくお願いします🙇‍♀️

数学II, 数学 B 数学 C (2)養鶏場Kで収穫される卵1個の重さ (単位はg) を表す確率変数をWとする。 Wは母平均が m, 母分散が の正規分布に従うとする。 ただし,とは正の 実数である。 確率変数を Z= 0 W-mで定めると,Zは平均 サ,標準偏差 シ の正規分布に従う。 EXX -1≦Z≦1 となる確率は0. スセであるから,養鶏場Kで収穫された卵か ら1個を無作為に抽出するとき,その卵の重さw タ 5 となる確率は0. スセであることがわかる。 20 平均 m に対する信頼度 95%の信頼区間は 1である。(64.0.14) 母平均m を推定してみよう。 養鶏場K で収穫された卵から400個を無作為に 抽出し, 重さを調べた結果, 標本平均は 64.0g, 標本の標準偏差は5.0gであっ た。 標本の大きさが十分に大きいときには, 母標準偏差の代わりに標本の標準偏 差を用いてよいことが知られている。 標本の大きさ400は十分に大きいので母 チ タ の解答群(同じものを繰り返し選んでもよい。) 0.87 0.95 ①m+o ②m+20 -0 ④ m-o m-20 チ については,最も適当なものを,次の①~⑤のうちから一つ選べ。 ⑩ 61.1mm 66.9 61.8mm 66.2 ④ 63.5≧m≦ 65.9 ① 61.8mm 64.5 62.7mm 64.5 ⑤ 63.5mm≦64.5 (数学II, 数学B, 数学C第5問は次ページに続

未解決 回答数: 2
数学 高校生

エ、オはσ(Y)=4×0.3=1.2とならないのに、 カ、キは、σ(Z)=4×0.3=1.2としている理由が知りたいです。 エ、オだけなぜ分散を計算してから標準偏差を求めるのでしょうか?

(1)母集団から無作為抽出された標本の独立性とその特徴について、 実際の例をもと に考える。 いま,内容量 50g と表示された小袋が四つ入ったお菓子の袋(以下,「大袋」と呼 ぶ)があったとする。以下では,袋の重さは考えずに、お菓子の重さだけを考える ことにする。四つの小袋に入っているお菓子の重さを, それぞれ X1, X2, X3, X4(g) とし,各X; (i = 1, 2, 3, 4) は平均 (期待値) 51.0 標準偏差 0.3 の正規分布 N(51.0, 0.32) に従うとする。 このとき,Y=X1+X2+ X3 + X4 とおけば,各X; は互いに独立と考えてよいか ら,確率変数 Y の平均は E(Y)=|アイウ 標準偏差は。 (Y)= I 計算できる。 オ と ところで,大袋に表示されているお菓子の重さは50×4=200(g) である。 これ と対比するために, 小袋に分けられていない四袋分のお菓子の重さを表す確率変 数 Z = 4X を考える。 ここで Xは正規分布 N(51.0, 0.32) に従うとする。 このとき, 確率変数の定数倍の平均と標準偏差についての関係式によれば、Zの 平均はE(Z)= アイウであるが,標準偏差はo (Z) = カ キ となり, 上 で求めた。(Y)の計算結果と異なる。この差は,X1,X2,Xs, X』 が無作為標本で あり,各X; が互いに独立であることに起因している。 この例からわかるように、無作為標本の性質,すなわち, 確率変数が互いに独立 な同一の分布に従っていることを理解しておくことが重要である。 (数学II,数学B,数学C第5問は次ページに続く。)

解決済み 回答数: 1
数学 高校生

ケコがわかりません。 ①2枚目の写真で蛍光ペンを引いているところなのですが、教科書で見たことがない解き方で、3枚目の写真(自分でまとめたノート)なのですが、これは黄色の蛍光ペンとピンクの蛍光ペンどちらなのですか? ②共通テストで統計が出るのですが、初めの二項分布とかは誘... 続きを読む

第5問 (16点) 次のような実験を行うことを考える。 太さが十分に小さく長さがしである, 曲がっていない針を1本用意する。 次に, 平坦な机の上に, 隣同士の直線間の距離がLとなるような平行線を多数描いておく このとき、次の試行を1600回繰り返す。 試行 針を無作為に机の上に落とし, 机の上に落ちて倒れた針が机に描かれた平行線と共有点 をもつかどうかを確認した後, 針を机から取りあげる。 (1) 1≤k≤1600 +3. k回目の試行について, 落ちた針が机に描かれた平行線と共有点をもつ場合は1, 共有点をも たない場合は0となるような確率変数を X とおく. また + X=X+X₂++X1600 m とする. 落ちた針が机に描かれた平行線と共有点をもつ確率を とおくと, Xは二項分布 Bア, に従う。 で また、実験回数の値1600は十分大きい数なので, 二項分布 B( 正規分布 N(m,) と見なすことができる。 ただし ・① は近似的に X-m ① X-m ② X-a 6 m ③ X-02 m 回の試行を行う形式を 形式をとることで, 今回の実験をすることができた。 のの結果、落ちた針が机に描かれた平行線と共有点をもった回数がクラス全体でちょうど 1000回となった。 _1000_5 R=1 1600 8 このとき、落ちた針が机に描かれた平行線と共有点をもつ状況の発生頻度 今回の実験結果から, (1) でおいたかの値の, 信頼度 95%の信頼区間を推定しよう (i) 本間では, 正規分布表 (省略) を用いて答えよ。 1600 |標準正規分布 N (0, 1)に従う, (1)の確率変数Zについて, 正規分布表より P(カキクZカキク)=0.95 が成り立つ。 (i)の結果より,標準正規分布 N(0, 1)に従う確率変数Zはおよそ95%の確率で不等式 ウ m= σ²= H カキク ZSカ キク また, >0である。 をみたしている。 ここで, 確率変数Xが近似的に正規分布 N(m, ♂) に従うので, 確率変数Zを a である。 このとき,確率変数X, Zは関係式 ② 220 Z= オ ...2 Z= オ TOCH と定めると, Zは近似的に標準正規分布 N(0, 1)に従う。 をみたす。 er-14 ア ウ の解答群(同じものを繰り返し選んでもよい。) 1 1 ⑩ 1600 ① 40 ② 1 ③ ④ ⑤ 1600p 6 40p ⑦カ ⑧ 44 40 1600 D 40 1600 I の解答群 ⑩ 1600p ① 40p 144 4 1600p(1-p) 40 p(1-p) 5 40p(1-p) ⑦ 40 1600 ここで, ①よりm= ウであり,これはかを含む式である また,得られた実験結果では X=1000 であったので 3.081 X 1600 5 =R= 8 (1 が成り立つ。 さらに、①の エ については,次の仮定を適用して考えるものとする。 仮定 エ の式中に現れるかは,今回の実験での発生頻度Rの値 D 1600 p(1-p) R=555 8 に置きかえて計算してもよい。 この仮定の下での値の信頼度 95%の信頼区間は

解決済み 回答数: 1