数学
高校生
解決済み

黄色のマーカーの所理解できません。
教えてください🙇‍♀️

比数列の共通項 うよ。 等比数列{6} が as=b3, a=b, as≠bs 00000 重要 例題 15 等比数列と対数 373 [神戸薬大] 基本 1,9 数列{a} は初項1, 公比5の等比数列である。 a1+a2+......+α≧10100 を満 たす最小のを求めよ。 ただし, log102=0.3010 とする。 [学習院大 ] p.365 基本事項 3 基本 11 rの関係式を導く CHART & SOLUTION 1章 2 いるから, {an} の公差d,{6} の公比の関係式 対数の利用 r 三れるからrを消去するのは困難である。 まずは rとすると .pn-1 ..① 不等式の左辺を計算して整理すると 5"≧4・1010+1 このままでは,nの値を求めるのは難しい。そこで、対数(数学IIの内容)を利用するとよ い。 なお,5"≧4・10100+1 のままでは、両辺の常用対数をとって も右辺の計算がうまくできない。 そこで, nが自然数のとき 54・10100 +1と5">4・101 は同値であるから, 5410100 の両辺の常用対数をとって計算するとよい。 5">4-10100 5" 24-10100++1 4-10100 ・410100+1 等比数列の和と指数の問題 等比数列 5-1 1 = 16 ← d を消去する方針。 解答 ② から 6d=3(2-1) ③ から 6d=2(3-1) a+a2+......+an= 1-(5"-1) 5-1 =1 (5"-1) a(r"-1) Sn= r-1 ←2m²-r-1 =(r-1)(2r+1) よって,与えられた不等式から11(5-1) 10100 整理して 5" ≧4・10100+1 ゆえに,5">4・10100 を満たす最小の自然数nを求めればよ すべてのnに対して い。 an=1,6=1 両辺の常用対数をとると nlog105>10g104+100 n (1-10g102)>210g102+100 log to 2=0.3010 であるから 右辺を少なくしても 式の形からnに影響を 及ぼさない。 ←10g105"=nlog105, log104-10100 =10g104+10g1010100 =210g102+100, a=1+ (n-1)(-3). 10 0.6990n> 100.6020 10g105=10g10 2 1006090 -log. 10-19102

回答

回答

nが自然数であれば、
5ⁿ≧4・10¹⁰⁰+1 と 5ⁿ>4・10¹⁰⁰ にあてはまる最小のnは同じだよってこと。

簡単な例をあげれば、nが自然数なら
5ⁿ≧4+1 と 5ⁿ>4
の両方ににあてはまる最小のnは一緒ですよね。

ゆめら

丁寧にありがとうございます🙇‍♀️
理解できました!

この回答にコメントする
疑問は解決しましたか?