2回微分してるのでy'の極限も必要になります。例えば単調増加とはいえ、二次関数のように増加するのかlogxのように増加するのかで急に増加するのか緩やかに増加するのかわかります。
極限は先生のおっしゃる通りかと思いますよ!
1枚目の写真は有理化ですね。増減表から判断することはできません。増減表を書くために極限の計算をするので…
数学
高校生
この極限の解き方を教えて欲しいです。この問題自体は微分法の応用で曲線の概形を求めるものです。特に下の方が分かりません。こういうのは増減、凹凸表から見て求めるしかないですか?数学教師からは極限のやり方をしっかり思い出して解くものと言われたのですが…。というかなぜ第1次導関数の極限を求めるのですか?普通元のyですよね?
上
2(2x2)
limy'= lim
=2,
x+0
+√4-x2
22-x2)
limy'= lim
x2-0 x→2-04-x2 2
性
8
0<x<2より
y'
20≦x≦2の範囲のyの増減やグラフの凹凸は、
次の表のようになる。
x
0
√2
***
2
+
0
y'
y"
-
-
y
07
極大
2
20
limy'= lim
また
x+0
2(2-x2)
=2,
x+0√√4-x2
2(2-x2)
limy'= lim
x-2-0√√4-x2
x2-0
以上により, 対称性を
考えて, 曲線の概形は
12
[図] のようになる。
-2
Ttz=1
bex ht
0
72
y
-
-2
/2
回答
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉