数学
高校生
解決済み

解答からの2行目の式が理解できません

358 第6章 微分法 練習 [181 例題181 微分係数 (1) 微分係数の定義に従って lim h0 (2) 微分係数 f'(a) の定義に従って lim f'(a) で表せ. 考え方 (1) f'(5)=limf(x) (5) →5 x-5 解答 (1) lim x-5 =lim x-5 =lim x-5 =5lim x5 =5f'(5)-f(5) (2) lim 14-0 =lim h→0 =lim h→0 =lim- h→0 5f(x)-xf(5) x-5 5f(x)-5f(5) +5f (5)-xf (5) x-5 x→a 5{f(x)f(5)} -f(5)(x-5) x-5 x-5 f(x)-f(5) x-5 -+lim 5 f(a+h)-f(a-2h) h -+lim{-f(5)} x 5 (2) f(a+h)-f(a) h h JJANG Ff'(a)+2f'(a)=3f'(a)_ Focus xq 5f(x)-xf(5) x-5 f(a+h) f(a)+f(a) -f (a-2h) h -lim h→0 (2) f'(a)=lim Chata mt f(a+h)-f(a)__(−2) · lim h→0 S'(a)=limf(x)-f(a) x-a f(a+h)-f(a-2h) h xa (1) 微分係数 f'(a) が存在する h→0 044 f(a−2h)-f(a) (x + $A h (5) f'(5) で表せ f(a+)-f(a) .im f(a−2h)-f(a) -2h SI=(AS+SI) mail (東京薬科大) f'(a)=limfa+O)-f(a) 注》は例題 181 (2)のように、ではなく 2hになる場合もあるが、2箇所の●は同じで、 ん→0のとき→0でないといけない ただし, lim の下はん→0のままでよい。 また、例題 181 の解答では、次の性質を利用している. (kは定数) limkf(x)=klimf(x), lim{f(x)±g(x)} = limf(x) ±limg(x) (複号同順) x→a を (防衛大改) x→5のままで考える。 {f(x) - f(5)} を作るため に,5f(5) を引いて加える。 微分係数の定義 f(a+h) f(a) を作るため にf(a) を引いて加える. 分子の a-2hに合わせて 分母も2hにし, lim の 前に2を掛ける. h→0のとき2h0 Thin 例 HOM 考

回答

✨ ベストアンサー ✨

5f(5)を足して5f(5)を引いたら結果的に0になって打ち消し合うので、値として表すものは同じになるので、5f(5)を足して引いています。
分母と分子に同じものを掛けても、結果的に約分されて打ち消して1を掛けるのと同義になるのでこれもまた値としてはなんら変わりはありません。
同じものを足し引きする、同じものを分母分子に掛けるという発想はよく使うので使いこなせるとよいですね。

あおちゃ。

理解できないです。。(;;)
結局0になるなら考えなくても良いのですか?

甘味

1+1=2ならば、左辺に100を足して100を引いても1+1+100-100=2です。
同じものを足して引く行為は値として何も変化がないので、自分の好きなものを足し引きして式をいじくることができます。

この回答にコメントする
疑問は解決しましたか?