数学
高校生

青チャートⅡ重要例題7です。
一つ目の場合分け、k=3qのときq≧1となっているところがわからないです…
問題の条件はkが自然数であるということだけなので、k=3qのときq≧0となるのではないでしょうか?

教えていただけると本当に助かります……。

重要 例題7 整数の問題への二項定理の利用 重要 6 kを自然数とする。 2を7で割った余りが4であるとき, kを3で割った余りは 2であることを示せ。 指針 2=7l+4 (は自然数) とおいてもうまくいかない。 ここでは, たが 3g, 3g+1, 3g +2 3で割った余りが 0, 1,2 (gはkを3で割ったときの商)のいずれかで表されることに注目し, k=3g+2の場 合だけ2を7で割った余りが4となることを示す方針で進める。 例えば,k=3gのときは、2=239=8°であり, 8°= (7+1)" として二項定理 を利用す ると2を7で割ったときの余りを求めることができる。 2 kを3で割った商をg とすると, は 3g, 3g+1,3g+2 3 で割った余りは0か1 答 のいずれかで表される。 か2である。 A [1] k=3g のとき, g≧1 であるから k=3, 6, 9, .. 2k=23=(2°)°=8°=(7+1)* =,Co7º+¢Ci7-1+…..+gCg-•7+,Cq =7(Co7º-1+gC179-2+..+°Cq-1)+1 よって2を7で割った余りは1である。 [2] k=3g+1のとき, g≧0であり g=0 すなわち k=1のとき g≧1 のとき 2=2=7・0+2 2k=23g+1=2・239=2・8°=2(7+1)。 =7.2(C79-1+,C179-2+..+qCg-1)+2 (*) よって2を7で割った余りは2である。 ◆二項定理 [3] k=3g+2のとき, g≧0であり g=0 すなわちん=2のとき 2=2°=4=7・0+4 g≧1のとき2k=239+2=22・239=4.8°=4(7+1)。 = 7.4(C79-1+,C179-2+..+,Cq-1) +4 [1] の式を利用。 よって2を7で割った余りは4である。 [1]~[3] から, 2を7で割った余りが4であるのは,k=3g+2のときだけである。 したがって、2を7で割った余りが4であるとき, kを3で割った余りは2である。 3g は整数で, 2″=7× (整数)+1の形。 ◄k=1, 4, 7, ◆二項定理を適用する式の 指数は自然数でなければ ならないから, q=0 と q≧1 で分けて考える。 (*)は [1] の式を利用 して導いている。 k=2, 5,8, 別解 合同式の利用。 合同式については, チャート式基礎からの数学Ⅰ + A p.544 ~ 参照。 Aまでは同じ。 8-1 = 7.1であるから 8≡1(mod 7 ) [1] k=3g (g≧1) のとき 2'2"=8°=1'≡1(mod 7) [2] k=3g+1 (g≧0) のとき q=0 の場合 2=2=7.0+? >1の場合 2k=239+1=89.2=19?-? [自然数nに対

回答

まだ回答がありません。

疑問は解決しましたか?