✨ ベストアンサー ✨
ちゃんと一周できてるなら移ってもいいと思いますよ。わからないことがあれば戻ってきたらいいだけで、むしろ進めておくほうがいいと思います。特に理系志望なら予習を勧めます。ただ、3乗の因数分解公式忘れた、必要十分条件って何?余弦定理ってどんなんだっけ?みたいなレベルなら、全く手がつかないと思うのでやり直したほうがいいです。あと、三角比の基本的な公式は「三角関数」で、2次関数の解の配置(存在範囲)は「三角関数、指数関数・対数関数、微分積分」のところで出てくるのでやり直しておくといいです。
この春から高2生でしょうか?標問を解くこと自体が模試の対策になると思うのですが、模試の対策というのは具体的にはどんなことをするつもりなのでしょうか。
回答ありがとうございます!
過去問をやったり総復習したりしようと思ってました!
決められた時間の中で実践的な問題を解くのはとても良いことです。どうしても問題集だと何がテーマの問題なのか上に書いてありがちなのでアウトプットとして相応しいと思います。模試やセンター数学IAの過去問等を解いてみるのは良いと思います。
しかし、まだ高2なので模試の出題範囲は狭く、今模試で点数が取れること、志望校判定で良い結果を残すことにそこまで意義はないと思います。モチベと緊張感を保つため程度でしょう。なので、模試の1週間前だけとかでも十分だと思います。時間を作るのが難しいならば、自分が受ける模試とその復習だけでも十分だと思います。
自分の感覚ですが、高2の秋冬あたりから差が広がるような気がします。その理由は数学に限った話だと、模試の難易度が上がったというより数IIBが単に数IAより難しいからだと思います。数IAに比べて、公式が多くて、内容も難しいため、演習を繰り返さないと解けるようにならないと思います。逆に、数Aの図形や確率に比べたら、数Bの数列やベクトルは教科書レベルの問題が解けるだけでも模試で安定して点数がとれる分野だと思います。
そういうことを勘案すれば、早めに数IIBに取り組む方が良いと思います。文系数学はもちろん、もし理系数学をやるとしても数IIBは大切です。数IIICで躓く原因の半分程度は数IIBの理解不足だと思います。
↑長文になってしまいすみません。
ありがとうございます!
数II Bの勉強を頑張りたいと思います!!
ありがとうございます!!
すごく迷ってたので教えてもらえて助かりました!
もう一つ質問したいんですけど、模試の対策をするのと
標準問題精講で受験に向けて勉強するのどっちを優先した方がいいと思いますか?