数学
高校生

(3)です。
下線の展開図での考え方がよく分からず、詳しく解説していただけるとありがたいです。

208 電房 例題 137 四面体 ABCD があり, AB=BC=CA=8, BD=10 である。 COS ∠ABD= (1) 辺ADとCDの長さ (3) 辺AC上の点Eに対して, BE + ED の最小値 23 32' COS <CAD= CHART O OLUTION 11 のとき、次のものを求めよ。 14 空間図形の問題 平面図形 (三角形) を取り出す (1) △ABDと△ACD (2) ACD を取り出して余弦定理を使う。 解答 (1) △ABD において, 余弦定理により AD²=82+102-2・8・10cos∠ABD = 49 よって, AD>0 であるから [AD=7_ △ACD において, 余弦定理により CD2=72+82-2・7・8 cos ∠CAD=25 よって, CD>0 であるから CD=5 (2) ACD に余弦定理を適用して cos ZACD= よって ∠ACD=60° (3) 右の図のように, 平面上の四角形 ABCD について考える。 3点B. E. Dが1つの直線上にあ るとき, BE+ED は最小になる。 よって, BCD において, 余弦定 理により BD'=82 +52-2・8・5cos∠BCD=129 BD =√129 /129 ゆえに, BD>0 であるから したがって 求める最小値は (3) 側面の△ABCと△ACD を平面上に広げて考える。 なお,平面上の2点間を結ぶ最短の経路は,2点を結ぶ線分である。... 82 +52-721 2・8・5 (2) ∠ACD の大きさ B 2 B 8 8 8 8 120° A 10 8 E 60°60° x+x C C 7 15 〔類 武庫川女子大] D 基本 118,134 D ← cos ∠ABD= 23 32 cos CAD=- HE A 80-A0-BL 14 ◆四面体 ABCD の側面 △ABC, △ACD を平面 上に広げる。 ◆最短経路は展開図で! 点を結ぶ線分になる。 PRACTICE・・・・ 137 ③ 1辺の長さがαの正四面体OABCにおいて, 辺AB, BC, Occes A 上にそれぞれ点P, Q, R をとる。 頂点Oから, P, Q, R の順 に3点を通り,頂点Aに至る最短経路の長さを求めよ。 P ← ∠BCD =∠ACB + ∠ACD=120 1 cos 120°=-20 EXERCIS A 1112 A a: (1) (2) R 1 とうEゥ 112③ 1 113③ P 114③ 115③ 116③ 117
数i 三角形の面積、空間図形への応用

回答

まだ回答がありません。

疑問は解決しましたか?