Clearnoteでできること
勉強トーク
公開ノート
Q&A
いいね
ログイン
マイアカウント
アカウントをお持ちの場合
パスワードをお忘れの方はこちら
ログイン
アカウント登録
Clearnote
Q&A
高校生
数学
数Ⅲ青チャート例題125の「-1/n+1」...
数学
高校生
3年以上前
ふるβ
数Ⅲ青チャート例題125の「-1/n+1」がどこからでてきたのかわかりません
級数O の初項から第n項までの部分和を Snとするとき,Szn-1, Sznをそれ | 級数O の収束,発散を調べ,収束すればその和を求めよ。 静>) San-1が求めやすい。Sanは San=Sn-1+(第 2n項)として求める。 厚本例題125 1 2通りの部分和 San-1, San の利用 211 OOOO0 1 1 新限級数1- 2 1 2 1 4 3 3 4 0 について n ぞれ求めよ。 基本124) 4章 前ページの基本例題124と異なり,ここでは( )がついていないことに注意。 -のようなタイプのものでは,Snを1通りに表すことが困難で,(1)のように, S, San の場合に分けて調べる。……の そして、次のことを利用する。 [1] lim San-1=lim San=S ならば lim S,=S 15 無 限 級 数 n→m n→0 n→00 [2] lim San-1キlim San ならば {S.}は発散 2→0 →0 答 1 ) Stn-1=1- 2 1 1 1 1 1 2 3 34 n n 1 1 =1 4部分和(有限個の和)なら ()でくくってよい。 =1 2 (3 3 n 1 F1- n+1 1 Sn=San-1- n+1 参 無限級数が収束すれば、 その級数を,順序を変えずに 任意に( )でくくった無限級 数は、もとの級数と同じ和に 収束することが知られている。 (1)から lim San-1=1,um Sen=lim(1- =1 n→0 「カ→ よって lim Sn=1 れ→0 したがって,無限級数のは収束して,その和は1 自然数 快討)無限級数の扱いに関する注意点 上の例題の無限級数の第n項を と考えてはいけない。( )が付いている場合は,n n n+1 番目の( )を第n 項としてよいが,( )が付いていない場合は、n番目の数が第n項となる。 注意 無限級数では,勝手に( )でくくったり、項の順序を変えてはならない! 例えば、S=1-1+1-1+1-1+……=(1-1)+(1-1)+(1-1)+……とみて、S=0などと1 したら 大間違い」(Sはヘ比 -1の無限等比級数のため,発散する。) ただし、有限個の このような制限はない。
数ⅲ
回答
まだ回答がありません。
回答するにはログインが必要です。
ログインして質問に回答する
新規登録
疑問は解決しましたか?
解決した
解決しなかった
この質問を見ている人は
こちらの質問も見ています😉
数学
高校生
32分
数Ⅰの問題です 写真の青線の部分の意味がわかりません 教えてください
数学
高校生
約2時間
集合の要素の個数 解き方がわかりません、図などで分かりやすく教えてほしいです。
数学
高校生
約4時間
至急21番の解説お願いします🙇♀️🙇♀️
数学
高校生
約10時間
なぜこの命題は真なのですか?
数学
高校生
約22時間
大問5A、解答解説お願いします。
数学
高校生
2日
高校一年生の数Aに関する質問です。 もし分かる方が居ましたら、教えて頂けると本当に嬉しいで...
数学
高校生
2日
"100以下の自然数勝(全体集合Uとする)のうち、次のような個数を求めよ" ⑶,⑷の解き方...
数学
高校生
2日
この問題の(ウ)と(オ)をベン図に集合の場所を示すと 写真のようになるのはどうしてなのか教...
数学
高校生
2日
この問題で(ア)の答えに1が入る理由を教えてください
数学
高校生
3日
添付している写真に私が考えたやり方が書いています。どこで間違えていますか。確率が1を超える...
おすすめノート
詳説【数学Ⅱ】第5章 微分と積分(前半)~微分係数と導関数~
3035
8
みいこ
詳説【数学Ⅱ】第1章 いろいろな式(前半)~恒等式・複素数~
2940
7
みいこ
詳説【数学Ⅱ】第5章 微分と積分(後半)~積分~
2355
5
みいこ
数学Ⅲ 極限/微分/積分
1551
9
yutaro634
News
ノート共有アプリ「Clearnote」の便利な4つの機能
共通テストで使える数学公式のまとめ
「二次関数の理解」を最大値まで完璧にするノート3選