数学
高校生

ここでの部分からよく分かりません、、、
α+βの3乗ではなくそれぞれ3乗したものを足すのか教えて欲しいです!

324 OOOO0 基本例題208 3次関数の極大値と極小値の和 aは定数とする。f(x)=x°+ax?+ax+1がx=α, B(α<B) で極値をとるとき, f(a)+f(B)=2ならばa=コである。 基本 207 【類上智大) 指計>3次関数 f(x) がx=a, 8で極値をとるから、a. Bは2次方程式 f'(x)=0 の解である。 しかし、f(x)=0 の解を求め,それをf(α)+f(B)=2に代入すると計算が面倒になる。 このようなときは, 2次方程式の解と係数の関係系 を利用するのがセオリー。 f(a)+f(B) は a, Bの対称式になるから,次の CHART に従って処理する。 の a, Bの対称式 基本対称式α+B, aB で表される 解答 f(x)=3x°+2ax+a (まず,f(x) が極値をもつよ うなaの値の範囲を求めて おく(前ページの例題 207 (2)と同様)。 f(x)はx=a, Bで極値をとるから,f(x)=0 すなわち 3x°+2ax+a==0 ①は異なる2つの実数解 α, βをもつ。 よって,①の判別式をDとすると D>0 03() a(a-3)>0 2=-3-a=a(a-3) であるから 4 したがって a<0, 3<a 2 2 また,Oで,解と係数の関係より α+B=- 1 a a, aB=→。 ここでf(a)+f(B)=(α°+B°)+a(α"+8°)+a(a+B)+2 =(α+B)°-3aB(α+B)+a{(α+B)。12cB}+a(α+B)+2 3 -(-3ヴー3号の (-番ガー2号の( a+ +2 4 2 -a+2 3 27 ゲー子が+2-2 f(a)+f(B)=2から f(a)+f(B)=2は, 関数 f(x)の極値の和が2であ るということ。 27 3 よって 2a°-9a°=0 すなわち α'(2aー9)=0 9 2を満たすものは =り 2
微分

回答

まだ回答がありません。

疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉