PromotionBanner

回答

(1)弧AE、弧BD、弧AB、弧DEで分けて考えます

弧AEの長さは
中心C、半径がACである円(円Aとします)の円周の半分の長さですから
直径×π×1/2=4a×π×1/2=2aπ

弧BDの長さは
中心C、半径がBCである円(円Bとします)の円周の半分の長さ
2a×π×1/2=aπ

弧ABの長さは
中心がAとBの中点、直径がABである円(円Cとします)の円周の半分の長さ
a×π×1/2=aπ/2

弧DEの長さは
中心がDとEの中点、直径がDEである円(円Dとします)
弧ABのときと同様にaπ/2

これらをすべてたすと4πa

(2)
円Aの面積の半分-円Bの面積の半分

円Cの面積の半分と円Dの面積の半分を足せばいいので
(2a×2a×π-a×a×π)+(a/2×a/2×π)×2
=3a²π+a²π/2
=7a²π/2
私の計算間違いだったら本当に申し訳ないのですが
私は(2)の答えは分母が2になると思いました

やっぱり私のミスでした
面積の半分を忘れてました アホ ごめんなさい
7a²π/2割る2で7a²π/4
が答えです

この回答にコメントする

ワイ字めっちゃ汚いなぁ...分かりにくかったら申し訳ないです💧
あ、逆ですみません。問題番号ふってるので、その順番で見てください。

むー

あ、フォローは大丈夫ですよー

この回答にコメントする
News
Clear img 486x290
ノート共有アプリ「Clear」の便利な4つの機能
Siora photography hgfy1mzy y0 unsplash scaled
共通テストで使える数学公式のまとめ
Jeshoots com 436787 unsplash min 3 486x290
「二次関数の理解」を最大値まで完璧にするノート3選