Mathematics
高中
已解決

(4)について質問です。なぜ8C4も2!で割るのですか?2人のグループを区別するから4C2だけを割るのではないのですか?私は2枚目の写真のように計算してしまっていたのですがどなたか教えて欲しいです🙇🏻‍♀️

176 8人を次の3つのグループに分ける方法は何通りあるか (1) 4人, 1人,3人のグループに分ける. (2) 2人ずつ、4つのグループ, A, B, C, D に分ける. (3)2人ずつ、4つのグループに分ける. (4) 4人 2人、2人の3つのグループに分ける。 (1) 8人から4人を選ぶ選び方はC 通り 残りの4人から1人を選ぶ選び方は, 4通り よって, 8C4X4C1= 8.7.6.5 4・3・2・1 ×4=280 (通り) C2通り (2)8人からAに入る2人の選び方は. 残りの6人からBに入る2人の選び方は, C2通り 残りの4人からCに入る2人の選び方は, 4C2通り よって, 8C2X6C2X4C2= 2.7 × 6.5 4.3 -X- -=2520 (通り) 2・12・12・1 (3)4つのグループを A, B, C, D の区別がある部屋に 入れると考えると,入れ方は, 4!=4・3・2・1=24 (通り) .010KEM したがって, 求めるグループの分け方をx通りとする と (2)より. x×4!=gC2X6C2×4C2 x= 8C2X6C2X4C2 2520 4! 24 = =105(通り) (4) 4人のグループをA, 2人のグループを B, C とすると, 8人からAに入る4人の選び方は, 残りの4人からBに入る2人の選び方は, OFI BC4通り C2通り 残りの2人はCに入るが、 実際はBとCは区別をしない. よって, C4X4C2-210 (G)) 2! (通り) e+a
(4) 6Cq. 4 Cz 21 7.34 2 70.8 560 2 4.3 ・

解答

✨ 最佳解答 ✨

模範解答の式とあなたの式は同じです
あなたの計算に間違いがあります

さくら

あ!ほんとですね💦ありがとうございます!では区別するときはいつ割っても問題ないということですか??

一旦区別をして、その区別をなくすから割る、のです
「いつ割る」という表現には違和感がありますが、
掛け算だけの式なら、
全体を割ろうが一部を割ろうが同じです

さくら

なるほど!理解できました!!ありがとうございます✨️✨️

留言
您的問題解決了嗎?