Mathematics
高中
已解決
(2)の問題のlog[x]y>0になる理由を教えてください🙇♀️
(2)0<x<1,0<y<1であるから logxy>0 (1) 2
与えられた不等式から
囲。
1
+
10gxy+2.
-3>0
←底をxにそろえる。
logxy
78-1-
x
両辺に10gxy (0) を掛けて整理すると
よって
(logxy)2-3logxy+2>0
(logxy-1)(10gxy-2)>0
←logxy=t とおくと
y 0<1
2-3t+2>0
(t-1)(t-2)>0
..
①
10gxy>0であるから
0<10gxy<1または2<10gxy
底xは0<x<1であるから, ① より
x<y<1 または y<x28801-"(木
x²
ゆえに,点(x, y) の存在範囲は右
の図の斜線部分。 ただし、 境界線を
含まない。
1
x
gol
←0<x<1,0<y<1
に注意。2015
(1) 不等式 10g4x2-10gx64≦1 を解け。
[類 愛知工大 ]
(2)0<x<1,0<y<1 とする。 不等式10gxy+210gyx-3>0を満たす点 (x, y) の存在範囲を
aler
図示せよ。
1
1/x
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8917
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6078
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6062
51
詳説【数学A】第2章 確率
5839
24
ありがとうございます!!