Mathematics
高中
已解決

重要例題121についてです!
なぜy2≧0(蛍光ペン引いてるところ)となるのかわかりません、なぜそう言えるのか教えてください!!

202 重要 例題 121 2変数関数の 実数x, yがx2+2y=1 を満たすとき, 1/x +y2の最大値と最小値 やよびその ときのxyの値を求めよ。 指針 p.150 例題 89 は条件式が1次だったが、2次の場合も方針は同じ。 条件式を利用して, 文字を減らす方針でいく。このとき、次の [1] 計算しやすい式になるように, 消去する文字を決める。 2点に注意。 ……ここでは、条件式を1/12 (1-x")と変形して 1/2x+ya に代入するとよい。 基本的 思い出した [2] 残った文字の変域を調べる。 2=1/12 (1-x2)で,y=0であることに注目。 ←(実数) ≧ 0 CHART 条件式 文字を減らす方針で変域に注意 x2+2y2=1から ① 解答 2≧0 であるから 1-x20 ゆえに (x+1)(x-1)≦02) よって -1≤x≤1 f(x)4 ①を代入すると 1 5 から1 1/2x+y=1/2x+ -/1/(x-/1/3+ これをf(x) とすると, ② の範囲で 2. 8 最大 x+ 2 10 5 最小 8 12 12 1 f(x)はx= x=1/2で最大値 88, x=-1で最小値 - 5 1 2 をとる。 ①から > > ―方だけが x= のとき x=-1のときy2=0 ゆえに したがって 3 1/(1-1)=1/12/26 4 y=0dd (x, y) = (1/2 土)のと 条件 =土 8 である。 のとき最大値 (x,y)=(-1, 0) のとき最小値 - 129 <消する x2 条件式はとして ともに2次 計算する式は ○xが1次, yが2次 であるから, yを消去 るしかない。 の2次式! 基本形に直す。 1 #+/(-1/2)+/ y=± ✓1/12 (1-2)

解答

✨ 最佳解答 ✨

yは実数だからy^2>=0です。

はるか

あっ見落としてました!!😭😭
ありがとうございます‼️

留言
您的問題解決了嗎?