Mathematics
高中
已解決

⑴と⑵の違いがいまいちわかんないです、、

図にすると同じとこさすと思っちゃうんですけど、、

A,Bとして B) トを持って集まった。 にする。 ある確率をP(k)と 基本43,44 して、最後にP(0) 用して求める。 個のプレゼントを1列 並べて, A から順に受 取ると考える。 P(A)=1-P(A)=1- 52 11 = 「解答 ら 62 36 また、目の和が偶数となるのは, 2個とも偶数または2 EA, 46 確率の基本計算と和事象の確率 00000 さいころを同時に投げるとき, 少なくとも1個は6の目が出るという事象 出た目の和が偶数となるという事象をBとする。 AまたはBが起こる確率を求めよ。 A Bのどちらか一方だけが起こる確率を求めよ。 全事象をひとすると, ひは右の図のように, 互いに 排反 な4つの事象 A∩B, ANB, ANB, ANB に分けら れる。 (1) P(AUB)=P(A)+P(B)-P(A∩B) を利用。 (2) A, B のどちらか一方だけが起こるという事象は, ANBまたはANB (互いに排反)で表される。 -U. 基本 43 44 B ANBA∩B AB (1)は、2個とも6以外の目が出るという事象であるか⑩ 少なくとも A∩B 407 2章 ? 確率の基本性質 には余事象が近道 検討 〇場合の数は, 並び 個とも奇数の場合で P(B)= 32+32 18 62 指針の図を次のように 表すこともある。 36 コロロの3つの口 B, C, D のプレゼン 並べる方法で3!通り。 更に、少なくとも1個は6の目が出て,かつ, 出た目の 和が偶数となる場合には, B A∩B A∩B (2, 6), (4, 6), (6, 2), (6, 4), (6, 6) の5通りがあるから P(A∩B)= 5 B A∩B A∩B 62 36 自分のプレゼント 取るなら, 残り1 ■ず自分のプレゼン け取る。 よって、求める確率は 1 11 36 プレゼントを受け 人の選び方は C2 きは, 4人の p.354) の数で 9通り 3 8 から1本を 確率を求め 2.410 EX 35 (2) Aだけが起こるという事象は ANB, Bだけが起こる という事象は ANB で表され、この2つの事象は互いに 排反である。 よって、求める確率は P(A∩B)+P(A∩B) ={P(A)-P(A∩B)}+{P(B)-P(A∩B)} 11 + 18 36 36 -2° 536 図から、次の等式が成り 立つ。 P(A∩B)=P(A)-P(A∩B), P(A∩B)=P(B)-P(A∩B) また, (2) では次の等式を 利用してもよい。 P(A∩B)+P(A∩B) =P(AUB)-P(A∩B) 19 (1)の結果を利用 36 5 練習 ジョーカーを除く1組52枚のトランプから同時に2枚取り出すとき, 少なくとも1 046 枚がハートであるという事象をA, 2枚のマーク(スペード, ハート, ダイヤ, クラ ブ)が異なるという事象をBとする。 このとき,次の確率を求めよ。 (1) AまたはBが起こる確率 (2) 4.Bのどちらか一方だけが起こる確率 P(AUB)=P(A)+P(B)-P(A∩B) 18 5 24 2 ++ 36 36 36 3

解答

✨ 最佳解答 ✨

これは「または」の意味が正しく
わかっているかどうかの話です

「AまたはB」は、
「AだがBでない」と
「BだがAでない」と
「AでありBでもある」を
すべて合わせたものを指します

絶対合格

なるほど!!!めっちゃわかりやすいです!
ありがとうございます😭

留言
您的問題解決了嗎?