Mathematics
高中
已解決

赤線部のように分かるのはなぜですか?🙇🏻‍♀️

基礎問 77 中線定理 小 △ABCにおいて,辺BCの中点をMとし, AB=c, BC=2a, CA = 6 とおくとき (1) cos B を a, b c で表せ. (2)AM を a, b c で表せ. (3) AB'+AC2=2 (AM2+BM2) が成りたつことを示せ . |精講 B M a b (2) 三角形の内部に線が1本ひいてあると, 1つの角を2度使うこ とができます. この問題でいえば,∠B を △ABC の内角と考え て(1)を求め,次に △ABMの内角と考えて(2) を求めることがそれ にあたります。 (3)この等式を中線定理 (パップスの定理) といいます。この等式は,まず使 えるようになることが第1です. 使えるようになったら自力で証明すること を考えることも大切です.また,証明方法はこれ以外に,三平方の定理を使 う方法や数学IIで学ぶ座標を使った方法, 数学Bで学ぶベクトル を使う方法などがあります。 HA 図中の線分 AM を中線といいますが,この線分AM を 2:1 に内分する 点Gを△ABCの重心といい (51), これから学ぶ数学Ⅱ の 「図形と方程 式」,数学Bの 「ベクトル」 でも再び登場してきます。 解答 (1) △ABCに余弦定理を適用して 4a²+c²-b2_4a²+c²-b² cos B= 2.2a.c 4ac (2)△ABM に余弦定理を適用して AM2=c2+α2-2cacosB=c2+a- 4a2+c2-62 2 62+c2-202 2 (3)a=BM,b=AC,c=AB だから, 2AM²=AC2+AB2-2BM2 よって, AB'+AC2=2(AM2+BM2)
中線定理

解答

✨ 最佳解答 ✨

https://youtu.be/dq-TzUhYWL4?si=vbd41B5Wz-HnRr_5
これ見たらいけると思います!

れもん

ありがとうございます🙏✨

留言
您的問題解決了嗎?