Mathematics
高中
已解決

∠QBCを求める問題なんですが、
解説では∠PBQとPBの長さを求めてかろ三角形BCPについて余弦定理で∠CBPも求めてそれらの角度を足して解いてるんですが、
普通にcosθ=18/25=0.72≒44°って出来ないのはなんでですか?🙇‍♂️

58 第3章 図形と計量 演習 例題 4 測量の問題 以下の問題を解答するにあたっては,必要に応じて p.384 の三角比の表を用いてもよい。 火災時に,ビルの高層階に取り残された人を救出する 際, はしご車を使用することがある。 図1のはしご車 で考える。 はしごの先端をA, はしごの支点をBと する。 はしごの角度 (はしごと水平面のなす角の大き さ)は75°まで大きくすることができ, はしごの長さ ABは35mまで伸ばすことができる。 また, はしご の支点Bは地面から2mの高さにあるとする。 以下, はしごの長さ ABは35m に固定して 考える。 また, はしごは太さを無視し て線分とみなし, はしご車は水平な地 面上にあるものとする。 図1のはしごは、 図2のように,点C A 図2 目安 解説動画 6分 はしごの先端 はしごの支点 A BY はしごの角度 2 m 図1 A pooo 000 000 1000 1000 2000 図3 で,AC が鉛直方向になるまで下向きに屈折させることができる。 ACの長さは 10mである。 図3のように,あるビルにおいて,地面から26mの高さにある位 置を点Pとする。 障害物のフェンスや木があるため, はしご車をBQの長さが 18mとなる場所にとめる。 ここで,点Qは,点Pの真下で,点Bと同じ高さに ある位置である。 ただし, はしご車, 障害物, ビルは同じ水平な地面上にあり, 点A, B, C, P, Q はすべて同一平面上にあるものとする。 はしごを点Cで屈折させ, はしごの先端A点Pに一致したとすると, ∠QBC の大きさはおよそアになる。 アに当てはまるものとして最も適当なものを,次の①~⑥のうちから一つ 選べ ⑩ 53 ①56 ② 59 ③ 63 ④ 67 ⑤ 71 ⑥ 75 Situation Check✓ はしごが目標地点に届くときのはしごと水平面のなす角の大きさを, 三角 比を用いて考察する問題である。 与えられた図も参考にしながら, はしご車の条件や目標地点の高さなどを 素早く読み取り、 それらを平面上に図示することがポイント。 解答 与えられた条件を平面上に 図示すると、 右の図のようになる。 10m PQ=26-2=24(m) であるから, △BPQは 25m 30m BQ:PQ:BP=3:4:5 の直角三角形である。 4 よって tan ∠PBQ= =1.333..... 素早く読む! 図をかきながら問題文 24m を読み, 与えられた条件 を整理するとよい。 ←∠PQB=90° かつ BQPQ=18:24=3:4 B 18m- からわかる。 PQ tan ∠PBQ= BQ

解答

✨ 最佳解答 ✨

普通にcosθ=18/25=0.72≒44°って出来ないのはなんでですか?
>直角三角形ではないから。

18/25は直角三角形ではない。画像の図を参照。
△CBQは直角三角形でないことがわかるはず。
だから、これでは求まらないから、余弦定理を使う🙇

なるほど直角三角形じゃないと使えないんでしたか
ありがとうございます!

留言
您的問題解決了嗎?