Mathematics
高中
已解決

この問題、取っ掛かりをどう考えますか?公比の正負が決まることで、3つの数の並べ方が6パターンから3パターンに絞ることができるから、正負を決めようとする感じでしょうか?
他の取っ掛かりはありますか?

3° のとき, ・3a-18= 以上から, (a,b,c) = (3/2,3, 6), (6,3,3/2) (イ) {a} の初項をα, 公比をとおくと, an=arn-1 [ (イ) 後半の方針] > bは解 a+az=a+ar=a(1+r)=135 as+ as = ar³ + ar₁ = ar³ (1+r) = 40} ar3(1+r). 40 8 2 \3 ける不等式ではない. 最小のn ・から を求めたいので, n=1,2, より,23 a (1+r) 135 27 よって,r= 2 3' 135 135 a= ・=81 1+r 5/3 {bm} の公差を d とおく. by~ 65 の和= なので, (84+2d) ・5=290 2\n-1 (3)", bm=84-13(n-1) b1+65 84+ ( 84+4d) 2/2 ・5が290 順に調べていくのが早い。 なお, 座標平面上に (n, an), (n, bm) をプロットすると下図のように なる。 YA 2 .. 42+d=29 . d=-13 -y=97-13x =81(3) an=81. n 1 2 3 4 5 9 32 64 an 81 54 36 24 16 と表よりan> b となる最小のnは7. 39 bn 84 71 58 45 32 19 6 br 02 03 04 05 06 a a az a3 asas 0 1234 5 6 7 x -1 2 演習題 (解答は p.72) pg を実数とし, pg とする.さらに, 3つの数4, p, gをある順に並べると等比数列 となり, ある順に並べると等差数列となるとする. このときp, q の組 (p, g) をすべて求 (小樽商大 ) めよ. 公比が正か負かを考えよ う。 57

解答

✨ 最佳解答 ✨

いろいろなアプローチがあるでしょう
公比の正負を考えてもよいでしょう

私なら3数をa, ar, ar²(a≠0, r≠1)とおいて
これらが等差になるところから3つに場合分けして
話を進めます

留言
您的問題解決了嗎?