Mathematics
高中
已解決

(3)のマーカーしてある部分がなぜそうなるのか分かりません。教えていただきたいです。

6 第6章 場合の数 301 Step Up お互いに身長の異なる8人を, 山の形に整列させる. i番目に並ぶ人の身長をん とし 一 番高い人をん (2≦k≦7) 番目に配置することにすると,これを数式で表記すれば、 h₁<h₂<<hr hr>...> he である. このとき, 以下の問いに答えよ. ただし, "Co+m+,C2+....+,C=2" が成 り立つことを用いてもよい。 (1) k=3 となる並べ方は何通りあるか答えよ. (2) 2≦k≦7 に対して, 並べ方は全部で何通りあるか答えよ. (3)n(n≧3)人を同様に整列させるとき, 2≦k≦n-1 に対して, 並べ方は全部で何通り あるか答えよ. 8人を身長の低い順に, 1, 2, 3, ..., 7, ⑧とする. (1) k=3 というのは、3番目に⑧がきていて, となる場合である. をみると 左の2つの△△は、7人から2人を選び,身長の低い 順に並べて、右の5つの□□□□□は、残りの5人を身 長の高い順に並べるので, C2=21(通り) (2) たとえば,k=2のときだと, 1AO で、△は7人から1人を選び, 6つの□には身長の高い 順に並べるから、 C7(通り) というようになっている. したがって,まとめると, k=2,3,4,5,6,7 に対し ⑧の左の△のところに, 7人から1人、2人,3人, 4人,5人,6人を選び, 身長の低い順に並べることにな あるので, 7C1+7C2+7C3+7C4+7C5+7C6 △△に入れる2人を選べば、 条件を満たす並べ方は1通り に決まる。 太 章末問題 &&& 同人) 6 (表)の通り ST(S) ={7C0+(7C1+7C2++7C6)+7C7}-(7C0+7C7) 3)=2'-2 KnCo+nCi+....+nCn=2" を 2乘出る利用。なお,この等式は、数 126 (通り) (高液る食 器 (3)人を身長の低い順に, ① ② ③, ... (2)と同様に,たとえば, k=2のときだと で,これは, (n-2)人 k=3のときだと, 棚の持ち とする 学で学習する二項定理を用 いて導くことができる。 (U) 0-0x2=1 (通り) 次の確率を求め、島 (n-1) 人から を除く 歌中1人を選ぶ。 以 △△□□□ 「目の出方は全部(n-3) 人 で,これは, n-1 (通り) したがって, 並べ方は全部で, n-Ci+n-1C2+n-1C3 ++n-1Cn-2 =-Cot-Ci+n-Cotto - Cn-2) +-- 2-1-2 (通り) △△に⑦を除く (n-1) 人か ら2人を選び, 身長の低い順 に並べる. —(n-Cotn-Cn-i) | Yeti のり
場合の数

解答

✨ 最佳解答 ✨

(a+b)^nを二項展開できますか?
2^n=(1+1)^nを展開して、見比べてみてください

留言

解答

Combinationの式は基本的にそのままではなく分数、二項定理が使えるなら指数型に直して回答する必要があります。
そして、今回(n-1)C(r)のrの部分が降べきの順になっているので二項定理がどうにか使えないかと考えます

二項定理は今回使うとすると(n-1)C(0)〜n-1C(n-1)までなので、頭と尻尾の項が1つずつ足りません。
ということで
二項定理分+いらない部分の排除
としていらない部分が-2になるのでこの答えです。

留言
您的問題解決了嗎?